Magnetic properties and large coercivity of MnxGa nanostructures

被引:17
|
作者
Jamer, M. E. [1 ]
Assaf, B. A. [1 ]
Bennett, S. P. [2 ]
Lewis, L. H. [3 ]
Heiman, D. [1 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Elect Engn, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
MnGa; Magnetic coercivity; MnxGa Magnetic nanoparticles; Vapor-liquid-solid growth; DO22; structure; FILMS;
D O I
10.1016/j.jmmm.2014.01.059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To investigate structure-property correlations, high-coercivity MnxGa nanoparticles were synthesized by the method of sequential deposition of Ga and Mn fluxes using molecular beam epitaxy. Spontaneous nanostructuring was assisted by the use of an Au precursor and thermal annealing, and the growth properties, structure and magnetic properties were characterized. Atomic force microscopy revealed average particle dimensions of 100 nm and X-ray diffraction revealed a dominant tetragonal DO22 crystal structure. Magnetic characterization at room temperature identified the presence of two magnetic phases, dominated by a high-coercivity (2.3 T) component in addition to a low-coercivity component. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 262
页数:4
相关论文
共 50 条
  • [1] Structure, Magnetic Properties, and Coercivity Mechanism of Rapidly Quenched MnxGa Ribbons
    Gong, Wenjie
    Zhao, Xinguo
    Fan, Wen
    Feng, Junning
    Lin, Anli
    He, Jian
    Liu, Wei
    Zhang, Zhidong
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)
  • [2] Structure, Magnetic Properties and Coercivity Mechanism of Rapidly Quenched MnxGa Ribbons.
    Gong, W.
    Zhao, X.
    Fan, W.
    Feng, J.
    Lin, A.
    He, J.
    Liu, W.
    Zhang, Z.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [3] Magnetic properties of hematite with large coercivity
    P. G. Bercoff
    H. R. Bertorello
    Applied Physics A, 2010, 100 : 1019 - 1027
  • [4] Magnetic properties of hematite with large coercivity
    Bercoff, P. G.
    Bertorello, H. R.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 100 (04): : 1019 - 1027
  • [5] Large coercivity in nanostructured rare-earth-free MnxGa films
    Nummy, T. J.
    Bennett, S. P.
    Cardinal, T.
    Heiman, D.
    APPLIED PHYSICS LETTERS, 2011, 99 (25)
  • [6] MnxGa1-x nanodots with high coercivity and perpendicular magnetic anisotropy
    Karel, J.
    Casoli, F.
    Lupo, P.
    Celegato, F.
    Sahoo, R.
    Ernst, B.
    Tiberto, P.
    Albertini, F.
    Felser, C.
    APPLIED SURFACE SCIENCE, 2016, 387 : 1169 - 1173
  • [7] Thermal dependence of coercivity in magnetic nanostructures
    Hernando, A
    Marin, P
    Vazquez, M
    Herzer, G
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 177 : 959 - 961
  • [8] Thermal dependence of coercivity in magnetic nanostructures
    Hernando, A.
    Marin, P.
    Vazquez, M.
    Herzer, G.
    Journal of Magnetism and Magnetic Materials, 1998, 177-181 (Pt 2): : 959 - 961
  • [9] Edge roughness and coercivity in magnetic nanostructures
    Bryan, MT
    Atkinson, D
    Cowburn, RP
    FIFTH INTERNATIONAL CONFERENCE ON FINE PARTICLE MAGNETISM, 2005, 17 : 40 - 44
  • [10] Calculation of coercivity of magnetic nanostructures at finite temperatures
    Suess, D.
    Breth, L.
    Lee, J.
    Fuger, M.
    Vogler, C.
    Bruckner, F.
    Bergmair, B.
    Huber, T.
    Fidler, J.
    PHYSICAL REVIEW B, 2011, 84 (22)