K-Theoretic Generalized Donaldson-Thomas Invariants

被引:5
|
作者
Kiem, Young-Hoon [1 ]
Savvas, Michail [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
MODULI; COMPLEXES; CYCLES;
D O I
10.1093/imrn/rnaa097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of almost perfect obstruction theory on a Deligne-Mumford stack and show that stacks with almost perfect obstruction theories have virtual structure sheaves, which are deformation invariant. The main components in the construction are an induced embedding of the coarse moduli sheaf of the intrinsic normal cone into the associated obstruction sheaf stack and the construction of a K-theoretic Gysinmap for sheaf stacks. We show that many stacks of interest admit almost perfect obstruction theories. As a result, we are able to define virtual structure sheaves and K-theoretic classical and generalized Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau three-folds.
引用
收藏
页码:2123 / 2158
页数:36
相关论文
共 50 条
  • [1] Higher rank K-theoretic Donaldson-Thomas Theory of points
    Fasola, Nadir
    Monavari, Sergej
    Ricolfi, Andrea T.
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [2] K-theoretic Donaldson-Thomas theory and the Hilbert scheme of points on a surface
    Arbesfeld, Noah
    [J]. ALGEBRAIC GEOMETRY, 2021, 8 (05): : 587 - 625
  • [3] A Theory of Generalized Donaldson-Thomas Invariants
    Joyce, Dominic
    Song, Yinan
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 217 (1020) : 1 - +
  • [4] CATEGORICAL AND K-THEORETIC DONALDSON-THOMAS THEORY OF C3 (PART I)
    Padurariu, Tudor
    Toda, Yukinobu
    [J]. DUKE MATHEMATICAL JOURNAL, 2024, 173 (10) : 1973 - 2038
  • [5] Categorical and K-theoretic Donaldson-Thomas theory of C3 (part II)
    Padurariu, Tudor
    Toda, Yukinobu
    [J]. FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [6] GENERALIZED DONALDSON-THOMAS INVARIANTS VIA KIRWAN BLOWUPS
    Kiem, Young-hoon
    Li, Jun
    Savvas, Michail
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (03) : 1149 - 1205
  • [7] Introduction to Donaldson-Thomas invariants
    Mozgovoy, Sergey
    [J]. ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS, 2013, : 195 - 210
  • [8] GENERALIZED DONALDSON-THOMAS INVARIANTS ON THE LOCAL PROJECTIVE PLANE
    Toda, Yukinobu
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (02) : 341 - 369
  • [9] K-theoretic Donaldson Invariants Via Instanton Counting
    Gottsche, Lothar
    Nakajima, Hiraku
    Yoshioka, Kota
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2009, 5 (03) : 1029 - 1111
  • [10] Instantons and Donaldson-Thomas invariants
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 849 - 855