GENERALIZED DONALDSON-THOMAS INVARIANTS VIA KIRWAN BLOWUPS

被引:0
|
作者
Kiem, Young-hoon [1 ]
Li, Jun [2 ]
Savvas, Michail [3 ]
机构
[1] Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South Korea
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
GROMOV-WITTEN THEORY; ARTIN STACKS; THEOREM; CYCLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a virtual cycle approach towards generalized Donaldson-Thomas theory of Calabi-Yau threefolds. Let M be the moduli stack of Gieseker semistable sheaves of fixed topological type on a Calabi-Yau threefold W. We construct an associated Deligne-Mumford stack M with an induced semi-perfect obstruction theory of virtual dimension zero and define the generalized Donaldson-Thomas invariant of W via Kirwan blowups to be the degree of the virtual cycle [M](vir). We show that it is invariant under deformations of the complex structure of W.
引用
收藏
页码:1149 / 1205
页数:57
相关论文
共 50 条
  • [1] THE DONALDSON-THOMAS INVARIANTS UNDER BLOWUPS AND FLOPS
    Hu, Jianxun
    Li, Wei-Ping
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 90 (03) : 391 - 411
  • [2] LOCAL DONALDSON-THOMAS INVARIANTS OF BLOWUPS OF SURFACES
    Hu, Jianxun
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (01) : 175 - 184
  • [3] A Theory of Generalized Donaldson-Thomas Invariants
    Joyce, Dominic
    Song, Yinan
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 217 (1020) : 1 - +
  • [4] K-Theoretic Generalized Donaldson-Thomas Invariants
    Kiem, Young-Hoon
    Savvas, Michail
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (03) : 2123 - 2158
  • [5] Introduction to Donaldson-Thomas invariants
    Mozgovoy, Sergey
    [J]. ADVANCES IN REPRESENTATION THEORY OF ALGEBRAS, 2013, : 195 - 210
  • [6] GENERALIZED DONALDSON-THOMAS INVARIANTS ON THE LOCAL PROJECTIVE PLANE
    Toda, Yukinobu
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (02) : 341 - 369
  • [7] Instantons and Donaldson-Thomas invariants
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (7-9): : 849 - 855
  • [8] Donaldson-Thomas invariants and flops
    Calabrese, John
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 103 - 145
  • [9] Donaldson-Thomas invariants and flops
    Calabrese, John
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 724 : 245 - 250
  • [10] Donaldson-Thomas type invariants via microlocal geometry
    Behrend, Kai
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (03) : 1307 - 1338