Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS

被引:17
|
作者
Pastirk, I. [1 ]
Zhu, X.
Martin, R. M.
Dantus, M.
机构
[1] Biophoton Solut Inc, Okemos, MI 48864 USA
[2] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
来源
OPTICS EXPRESS | 2006年 / 14卷 / 19期
关键词
D O I
10.1364/OE.14.008885
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the remote characterization and dispersion compensation ( pulse compression) of femtosecond pluses using multiphoton intrapulse interference phase scan (MIIPS). The results presented here were carried out at a distance of 28.9 m from the target. The method could be used with targets placed kilometers away. The amplified pulses arrive at the remote target within one percent of transform limit or accurately phase-shaped by user defined phase functions. From our experiment we measure the group velocity dispersion of air at 800 nm to be 20.1 +/- 1.5 fs(2)/m, which is in good agreement with published values. We consider this method for remote characterization and dispersion compensation to be an important step towards the development of reliable applications requiring the propagation of ultrashort pulses to remote targets. (c) 2006 Optical Society of America
引用
收藏
页码:8885 / 8889
页数:5
相关论文
共 50 条
  • [21] Dispersion measurements of microstructured fibers using femtosecond laser pulses
    Ouzounov, D
    Homoelle, D
    Zipfel, W
    Webb, WW
    Gaeta, AL
    West, JA
    Fajardo, JC
    Koch, KW
    OPTICS COMMUNICATIONS, 2001, 192 (3-6) : 219 - 223
  • [22] Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses
    Shim, Sang-Hee
    Strasfeld, David B.
    Zanni, Martin T.
    OPTICS EXPRESS, 2006, 14 (26): : 13120 - 13130
  • [23] Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings
    Li, GW
    Zhou, CH
    Dai, EW
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (04) : 767 - 772
  • [24] Feedback quantum control of population transfer using shaped femtosecond pulses
    Bardeen, C
    Yakovlev, VV
    Wilson, KR
    Carpenter, SD
    Weber, PM
    Warren, WS
    ULTRAFAST PHENOMENA XI, 1998, 63 : 645 - 647
  • [25] Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses
    Buckanie, N. M.
    Goehre, J.
    Zhou, P.
    von der Linde, D.
    Horn-von Hoegen, M.
    Heringdorf, F-J Meyer zu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (31)
  • [26] Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives
    Müller, M
    Squier, J
    Wolleschensky, R
    Simon, U
    Brakenhoff, GJ
    JOURNAL OF MICROSCOPY, 1998, 191 : 141 - 150
  • [27] Quantum control and quantum control landscapes using intense shaped femtosecond pulses
    Wollenhaupt, M
    Präkelt, A
    Sarpe-Tudoran, C
    Liese, D
    Baumert, T
    JOURNAL OF MODERN OPTICS, 2005, 52 (16) : 2187 - 2195
  • [28] Systematic Control of Nonlinear Optical Processes Using Optimally Shaped Femtosecond Pulses
    Lozovoy, VV
    Dantus, M
    CHEMPHYSCHEM, 2005, 6 (10) : 1970 - 2000
  • [29] Theoretical investigations of material modification using temporally shaped femtosecond laser pulses
    I.M. Burakov
    N.M. Bulgakova
    R. Stoian
    A. Rosenfeld
    I.V. Hertel
    Applied Physics A, 2005, 81 : 1639 - 1645
  • [30] Theoretical investigations of material modification using temporally shaped femtosecond laser pulses
    Burakov, IM
    Bulgakova, NM
    Stoian, R
    Rosenfeld, A
    Hertel, IV
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (08): : 1639 - 1645