Permanent of Toeplitz-Hessenberg Matrices with Generalized Fibonacci and Lucas entries

被引:0
|
作者
Belbachir, Hacene [1 ]
Belkhir, Amine [1 ]
Djellas, Ihab-Eddine [1 ,2 ]
机构
[1] USTHB, RECITS Lab, Dept Math, POB 32, Algiers 16111, Algeria
[2] Ctr Rech Informat Sci & Tech CERIST, Ben Aknoun, Algeria
关键词
Generalized Fibonacci numbers; Generalized Lucas numbers; Toeplitz-Hessenberg matrix; Permanent; Determinant; Recurrent sequences; Fibonacci sums; IDENTITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we evaluate the permanent and determinant of some Toeplitz-Hessenberg matrices with generalized Fibonacci and generalized Lucas numbers as entries. We develop identi-ties involving sums of products of generalized Fibonacci numbers and generalized Lucas numbers with multinomial coefficients using the matrix structure, and then we present an application of the determinant of such matrices.
引用
收藏
页码:558 / 570
页数:14
相关论文
共 50 条
  • [41] Determinant Formulas of Some Hessenberg Matrices with Jacobsthal Entries
    Goy, Taras
    Shattuck, Mark
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2021, 16 (01): : 191 - 213
  • [42] Inverses of generalized Hessenberg matrices
    Abderraman Marrero, J.
    Rachidi, M.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03): : 559 - 570
  • [43] On Fibonacci and Lucas Generalized Octonions
    Bilgici, Goksal
    Unal, Zafer
    Tokeser, Umit
    Mert, Tugba
    ARS COMBINATORIA, 2018, 138 : 35 - 44
  • [44] On generalized Fibonacci and Lucas polynomials
    Nalli, Ayse
    Haukkanen, Pentti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3179 - 3186
  • [45] ON THE Q ANALOGUE OF FIBONACCI AND LUCAS MATRICES AND FIBONACCI POLYNOMIALS
    Sahin, Adem
    UTILITAS MATHEMATICA, 2016, 100 : 113 - 125
  • [46] A note on generalized Hessenberg matrices
    Elsner, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 409 : 147 - 152
  • [47] 关于Toeplitz-Hessenberg矩阵的逆和行列式计算
    郑振
    邓勇
    伊犁师范学院学报(自然科学版), 2019, 13 (03) : 5 - 8
  • [48] On matrices related with Fibonacci and Lucas numbers
    Fu, Xudan
    Zhou, Xia
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 96 - 100
  • [49] Inverse of triangular matrices and generalized bivariate Fibonacci and Lucas p-polynomials
    Sahin, Adem
    Kaygisiz, Kenan
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 18 - 28
  • [50] On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers
    Li, Hsuan-Chu
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8353 - 8358