Finite-power performance of quantum heat engines in linear response

被引:9
|
作者
Liu, Qin [1 ]
He, Jizhou [1 ]
Ma, Yongli [2 ,3 ]
Wang, Jianhui [1 ,2 ,3 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
[2] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[3] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
LAW;
D O I
10.1103/PhysRevE.100.012105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the finite-power performance of quantum heat engines working in the linear response regime where the temperature gradient is small. The engine cycles with working substances of ideal harmonic systems consist of two heat transfer and two adiabatic processes, such as the Carnot cycle, Otto cycle, and Brayton cycle. By analyzing the optimal protocol under maximum power we derive the explicitly analytic expression for the irreversible entropy production, which becomes the low dissipation form in the long duration limit. Assuming the engine to be endoreversible, we derive the universal expression for the efficiency at maximum power, which agrees well with that obtained from the phenomenological heat transfer laws holding in the classical thermodynamics. Through appropriate identification of the thermodynamic fluxes and forces that a linear relation connects, we find that the quantum engines under consideration are tightly coupled, and the universality of efficiency at maximum power is confirmed at the linear order in the temperature gradient.
引用
收藏
页数:7
相关论文
共 50 条