Boundedness in asymmetric oscillations under the non-resonant case

被引:3
|
作者
Li, Min [1 ]
Li, Xiong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Asymmetric oscillations; Boundedness; Normal form; PERIODIC-SOLUTIONS; FIXED-POINTS; STABILITY; EQUATION; SYSTEMS; EQUILIBRIUM;
D O I
10.1016/j.jde.2020.10.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the boundedness of all solutions of the asymmetric oscillation x '' + ax(+) - bx(-) = p(t), where x(+) = max{x, 0}, x(-) = max{-x, 0}, p(t) is a real analytic 2 pi periodic function, a and b are two different positive constants satisfying omega(0) := 1/2(1/root a + 1/root b) is an element of R\Q and the condition vertical bar k omega(0) - l vertical bar >= c(0)/Omega(vertical bar k vertical bar), k is an element of Z\{0}, l is an element of Z, where Omega is an approximation function and c(0) is a small positive constant. In particular, when a = 5, b = 1, p(t) = cos 4t, the boundedness of all solutions will be proved. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:828 / 856
页数:29
相关论文
共 50 条
  • [31] Boundedness in Asymmetric Oscillations at Resonance in a Critical Situation
    Zhang, Shufang
    Zhang, Xinli
    TAIWANESE JOURNAL OF MATHEMATICS, 2022,
  • [32] Flow characterisation of diffusion flame under non-resonant acoustic excitation
    Chen, Li-Wei
    Wang, Qian
    Zhang, Yang
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 45 : 227 - 233
  • [33] Polariton and spin dynamics in semiconductor microcavities under non-resonant excitation
    Martin, M. D.
    Aichmayr, G.
    Amo, A.
    Ballarini, D.
    Klopotowski, L.
    Vina, L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (29)
  • [34] Resonant and non-resonant tunneling through a double barrier
    Olkhovsky, VS
    Recami, E
    Zaichenko, AK
    EUROPHYSICS LETTERS, 2005, 70 (06): : 712 - 718
  • [35] RESONANT AND NON-RESONANT ADIABATIC INVARIANTS GENERATED BY MACSYMA
    MCNAMARA, B
    CHAR, B
    FATEMAN, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1122 - 1122
  • [36] RESONANT AND NON-RESONANT PROCESSES IN DOUBLE BARRIER STRUCTURES
    LEADBEATER, ML
    ALVES, ES
    EAVES, L
    HENINI, M
    HUGHES, OH
    CELESTE, AC
    PORTAL, JC
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 6 (01) : 63 - 66
  • [37] Dynamical reliability of internally resonant or non-resonant strongly nonlinear system under random excitations
    Wu, Yongjun
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 118 : 767 - 780
  • [38] Homogenization of nanostructure waveguides in the non-resonant and resonant regimes
    Samadian, Parya
    Hall, Trevor J.
    2015 PHOTONICS NORTH, 2015,
  • [39] SERVOHYDRAULIC RESONANT/NON-RESONANT TESTING MACHINES.
    Jacoby, Gerhard
    Klinger, Friedrich
    1600, (14):
  • [40] RECURRENCE OF NON-RESONANT HOMEOMORPHISMS ON THE TORUS
    Potrie, Rafael
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3973 - 3981