Enhancement in corrosion and electrical wear resistance of copper via laser surface alloying with NiTi

被引:28
|
作者
Kwok, C. T. [1 ,2 ]
Wong, P. K. [1 ]
Man, H. C. [3 ]
机构
[1] Univ Macau, Dept Electromech Engn, Macau, Peoples R China
[2] Univ Macau, Inst Appl Phys & Mat Engn, Macau, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China
来源
关键词
Laser surface alloying; NiTi; Copper; Corrosion; Electrical sliding wear; SHAPE-MEMORY ALLOY; DRY SLIDING WEAR; STAINLESS-STEEL; CAVITATION EROSION; PART II; TRIBOLOGICAL BEHAVIOR; CU; TINI; MECHANISM; CHROMIUM;
D O I
10.1016/j.surfcoat.2020.126804
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With a 2.3-kW high-power diode laser, laser surface alloying of a commercially pure copper (cp Cu) with NiTi powder was carried out to attain higher corrosion and electrical wear resistances. Potentiodynamic polarization was conducted in simulated acid rain (SAR) at 25 degrees C for simulating the corrosive environment. In the SAR, corrosion potentials of all laser-alloyed samples are found to be nobler than those of cp Cu and NiTi alloy and their corrosion current densities are lower than that of cp Cu although their oxide layers are less uniform. Electrical wear tests were also carried out in both dry and wet conditions with a pin-on-disc tribometer. The electrical wear resistances of the laser-alloyed samples in wet condition are higher than in dry condition due to lubrication effect and reduction in frictional heat. The electrical wear resistances of all laser-alloyed samples were improved as compared with cp Cu owing to the presence of pseudo-plasticity of B19' and hard IMPs, and work hardening effect during electrical wear. The contribution of electrical wear in SAR is mainly mechanical wear, and wear-corrosion synergism up to 36.1%, while corrosion is negligible. Compared with cp Cu, the interfacial contact resistance of the laser-alloyed samples at 50 N/cm 2 has increased from 3.5 to 7.2 times.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Investigation of corrosion behavior of high nickel ductile iron by laser surface alloying with copper
    Zenc, DW
    Yung, KC
    Xie, CS
    SCRIPTA MATERIALIA, 2001, 44 (12) : 2747 - 2752
  • [42] Wear and Corrosion Resistance of Surface Plasma Tantalum Modified Layer on Pure Copper
    Lyu X.-M.
    He Y.
    Jiang T.
    Yang K.
    Dang B.
    Zhang P.-Z.
    Surface Technology, 2022, 51 (04): : 219 - 226
  • [43] Well-Adhered Ti Alloying Layer on NiTi Alloy: Surface Ni Content, Corrosion Resistance, and Cytocompatibility
    Gao, Jie
    Xin, Yongbing
    Bai, Jin
    Hei, Hongjun
    Yu, Shengwang
    Zhou, Bing
    Zheng, Ke
    Ma, Yong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025, 34 (02) : 987 - 997
  • [44] Improvement of the corrosion resistance of NiTi stents by surface treatments
    Trepanier, C
    Tabrizian, M
    Yahia, LH
    Bilodeau, L
    Piron, DL
    MATERIALS FOR SMART SYSTEMS II, 1997, 459 : 363 - 368
  • [45] ENHANCEMENT OF WEAR AND CORROSION-RESISTANCE OF METAL-MATRIX COMPOSITES BY LASER COATINGS
    GOVINDARAJU, MR
    MOLIAN, PA
    JOURNAL OF MATERIALS SCIENCE, 1994, 29 (12) : 3274 - 3280
  • [46] Enhancement of corrosion resistance of nickel based superalloys by laser surface melting
    Samantaroy, P. K.
    Girija, S.
    Kaul, R.
    Mudali, U. Kamachi
    SURFACE ENGINEERING, 2013, 29 (07) : 522 - 530
  • [47] Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner
    Zhong, Minlin
    Liu, Wenjin
    Zhang, Hongjun
    WEAR, 2006, 260 (11-12) : 1349 - 1355
  • [48] Microstructure and Wear Resistance Enhancement of Semi-Steel Rolls by Laser Surface Alloying of NiCr-Cr3C2
    Sun, G.
    Zhang, Y.
    Liu, C.
    Li, P.
    Tao, X.
    LASERS IN ENGINEERING, 2010, 19 (5-6) : 347 - 361
  • [49] Laser surface alloying of an Mg alloy with Al+Mn to improve corrosion resistance
    Majumdar, JD
    Maiwald, T
    Galun, R
    Mordike, BL
    Manna, I
    LASERS IN ENGINEERING, 2002, 12 (03) : 147 - 169
  • [50] Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4
    Lee, S
    Park, C
    Lim, Y
    Kwon, H
    JOURNAL OF NUCLEAR MATERIALS, 2003, 321 (2-3) : 177 - 183