Evolution of large-scale flow from turbulence in a two-dimensional superfluid

被引:112
|
作者
Johnstone, Shaun P. [1 ]
Groszek, Andrew J. [1 ,5 ]
Starkey, Philip T. [1 ]
Billington, Christopher J. [1 ,2 ,3 ]
Simula, Tapio P. [1 ,6 ]
Helmerson, Kristian [1 ,4 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Gaithersburg, MD 20899 USA
[4] Monash Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Clayton, Vic 3800, Australia
[5] Newcastle Univ, Joint Quantum Ctr JQC Durham Newcastle, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[6] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
CLUSTERS;
D O I
10.1126/science.aat5793
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonequilibrium interacting systems can evolve to exhibit large-scale structure and order. In two-dimensional turbulent flow, the seemingly random swirling motion of a fluid can evolve toward persistent large-scale vortices. To explain such behavior, Lars Onsager proposed a statistical hydrodynamic model based on quantized vortices. Here, we report on the experimental confirmation of Onsager's model. We dragged a grid barrier through an oblate superfluid Bose-Einstein condensate to generate nonequilibrium distributions of vortices. We observed signatures of an inverse energy cascade driven by the evaporative heating of vortices, leading to steady-state configurations characterized by negative absolute temperatures. Our results open a pathway for quantitative studies of emergent structures in interacting quantum systems driven far from equilibrium.
引用
收藏
页码:1267 / +
页数:25
相关论文
共 50 条
  • [41] Fast Computation of Two-Dimensional Spatial Electromagnetic Scattering from Large-Scale Targets
    Pan, Xiao-Min
    Sheng, Xin-Qing
    2013 COMPUTATIONAL ELECTROMAGNETICS WORKSHOP (CEM'13), 2013, : 1 - 3
  • [42] Three-dimensional evolution of large-scale vortices in supersonic flow
    Feng, Jun-hong
    Shen, Chi-bing
    Wang, Qian-cheng
    APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [43] STATISTICAL FEATURES OF THE EVOLUTION OF TWO-DIMENSIONAL TURBULENCE
    CARNEVALE, GF
    JOURNAL OF FLUID MECHANICS, 1982, 122 (SEP) : 143 - 153
  • [44] Late dynamics of large-scale vortices in periodic two-dimensional flows
    Chai, J.
    Fang, L.
    PHYSICS LETTERS A, 2022, 426
  • [45] Large-scale dynamics in two-dimensional Euler and surface quasigeostrophic flows
    Tran, Chuong V.
    Dritschel, David G.
    PHYSICS OF FLUIDS, 2006, 18 (12)
  • [46] Universality in scattering by large-scale potential fluctuations in two-dimensional conductors
    Yudson, Vladimir I.
    Maslov, Dmitrii L.
    PHYSICAL REVIEW B, 2007, 75 (24):
  • [47] Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors
    Lin, Yu-Chuan
    Jariwala, Bhakti
    Bersch, Brian M.
    Xu, Ke
    Nie, Yifan
    Wang, Baoming
    Eichfeld, Sarah M.
    Zhang, Xiaotian
    Choudhury, Tanushree H.
    Pan, Yi
    Addou, Rafik
    Smyth, Christopher M.
    Li, Jun
    Zhang, Kehao
    Haque, M. Arran
    Folsch, Stefan
    Feenstra, Randall M.
    Wallace, Robert M.
    Cho, Kyeongjae
    Fullerton-Shirey, Susan K.
    Redwing, Joan M.
    Robinson, Joshua A.
    ACS NANO, 2018, 12 (02) : 965 - 975
  • [48] Novel approaches for large-scale two-dimensional hydrodynamic modelling of rivers
    Yossef, Mohamed F. M.
    de Jong, J. S.
    Spruyt, A.
    Scholten, M.
    NINTH INTERNATIONAL CONFERENCE ON FLUVIAL HYDRAULICS (RIVER FLOW 2018), 2018, 40
  • [49] On two-dimensional large-scale primitive equations in oceanic dynamics (I)
    Huang, Dai-wen
    Guo, Bo-ling
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 581 - 592
  • [50] DC Programming and DCA for Large-Scale Two-Dimensional Packing Problems
    Ndiaye, Babacar Mbaye
    Le Thi Hoai An
    Pham Dinh Tao
    Niu, Yi Shuai
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT II, 2012, 7197 : 321 - 330