Confidence intervals for a ratio of binomial proportions based on paired data

被引:26
|
作者
Bonett, Douglas G. [1 ]
Price, Robert M.
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
关键词
continuity correction; cross-over design; interval estimation; matched-pairs design; repeated measures design; sample size; score interval; Wald interval; Wilson interval;
D O I
10.1002/sim.2440
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Four interval estimation methods for the ratio of marginal binomial proportions are compared in terms of expected interval width and exact coverage probability. Two new methods are proposed that are based on combining two Wilson score intervals. The new methods are easy to compute and perform as well or better than the method recently proposed by Nam and Blackwelder. Two sample size formulas are proposed to approximate the sample size required to achieve an interval estimate with desired confidence level and width. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:3039 / 3047
页数:9
相关论文
共 50 条
  • [31] CONFIDENCE INTERVALS FOR THE WEIGHTED SUM OF TWO INDEPENDENT BINOMIAL PROPORTIONS
    Decrouez, Geoffrey
    Robinson, Andrew P.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2012, 54 (03) : 281 - 299
  • [32] A fair comparison of credible and confidence intervals: an example with binomial proportions
    Castro, Tuany de Paula
    Paulino, Carlos Daniel
    Singer, Julio M.
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2022, 80 (03): : 371 - 382
  • [33] A Comparison of Several Methods for the Confidence Intervals of Negative Binomial Proportions
    Thong, Alfred Lim Sheng
    Shan, Fain Pei
    [J]. INNOVATION AND ANALYTICS CONFERENCE AND EXHIBITION (IACE 2015), 2015, 1691
  • [34] Approximate Simultaneous Confidence Intervals for Multiple Contrasts of Binomial Proportions
    Schaarschmidt, Frank
    Sill, Martin
    Hothorn, Ludwig A.
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (05) : 782 - 792
  • [35] Weighted profile likelihood-based confidence interval for the difference between two proportions with paired binomial data
    Pradhan, Vivek
    Saha, Krishna K.
    Banerjee, Tathagata
    Evans, John C.
    [J]. STATISTICS IN MEDICINE, 2014, 33 (17) : 2984 - 2997
  • [36] Confidence Estimation of a Ratio of Binomial Proportions for Dependent Populations
    A. Kokaew
    J. Thaithanan
    W. Bodhisuwan
    A. Volodin
    [J]. Lobachevskii Journal of Mathematics, 2021, 42 : 394 - 403
  • [37] Confidence Estimation of a Ratio of Binomial Proportions for Dependent Populations
    Kokaew, A.
    Thaithanan, J.
    Bodhisuwan, W.
    Volodin, A.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (02) : 394 - 403
  • [38] Logarithmic confidence intervals for the cross-product ratio of binomial proportions under different sampling schemes
    Sungboonchoo, Chanakan
    Yang, Su-Fen
    Panichkitkosolkul, Wararit
    Volodin, Andrei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) : 2686 - 2704
  • [39] Likelihood-weighted confidence intervals for the difference of two binomial proportions
    Lee, JJ
    Serachitopol, DM
    Brown, BW
    [J]. BIOMETRICAL JOURNAL, 1997, 39 (04) : 387 - 407
  • [40] Approximate confidence intervals for a linear combination of binomial proportions: A new variant
    Escudeiro, Sara
    Freitas, Adelaide
    Afreixo, Vera
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 7501 - 7524