On the occupation time on the half line of pinned diffusion processes

被引:0
|
作者
Yano, Yuko [1 ]
机构
[1] Ochanomizu Univ, Dept Informat Sci, Bunkyo Ku, Tokyo 1128610, Japan
关键词
Brownian motion; arc-sine law; speed measure; Krem's theory; Tauberian theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to generalize Uvy's result of the occupation time on the half line of pinned Brownian motion for pinned diffusion processes. An asymptotic behavior of the distribution function at the origin of the occupation time Gamma(+)(t) and limit theorem for the law of the fraction Gamma(+)(t)/t when t -> infinity are studied. An expression of the distribution function by the Riemann-Liouville fractional integral for pinned skew Bessel diffusion processes is also obtained. Krein's spectral theory and Tauberian theorem play important roles in the proofs.
引用
收藏
页码:787 / 802
页数:16
相关论文
共 50 条
  • [31] ASYMPTOTIC BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION ON THE HALF LINE
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) : 1391 - 1407
  • [32] On (a, b)-dichotomy for evolutionary processes on a half-line
    Preda, P
    Pogan, A
    Preda, C
    GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 217 - 225
  • [33] Diffusion in a partially absorbing medium with position and occupation time resetting
    Bressloff, Paul C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (06):
  • [34] Functional limit theorem for occupation time processes of intermittent maps
    Sera, Toru
    NONLINEARITY, 2020, 33 (03) : 1183 - 1217
  • [35] Occupation time of Levy processes with jumps rational Laplace transforms
    Ait-Aoudia, Djilali
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [36] Estimation error for occupation time functionals of stationary Markov processes
    Altmeyer, Randolf
    Chorowski, Jakub
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (06) : 1830 - 1848
  • [37] Large deviation for pinned covering diffusion
    Ichihara, K
    BULLETIN DES SCIENCES MATHEMATIQUES, 2001, 125 (6-7): : 529 - 551
  • [38] A nonlinear diffusion equation with reaction localized in the half-line
    Ferreira, Raul
    de Pablo, Arturo
    MATHEMATICS IN ENGINEERING, 2022, 4 (03): : 1 - 24
  • [39] Small time asymptotics of diffusion processes
    A. F. M. ter Elst
    Derek W. Robinson
    Adam Sikora
    Journal of Evolution Equations, 2007, 7 : 79 - 112
  • [40] Entropy and time: Thermodynamics of diffusion processes
    Garbaczewski, Piotr
    ACTA PHYSICA POLONICA B, 2008, 39 (05): : 1087 - 1101