Adaptive global power optimization for Web servers

被引:4
|
作者
Piga, Leonardo [1 ]
Bergamaschi, Reinaldo A. [1 ]
Breternitz, Mauricio [2 ]
Rigo, Sandro [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Comp, BR-13083852 Campinas, SP, Brazil
[2] Adv Micro Devices Inc, Austin, TX 78735 USA
来源
JOURNAL OF SUPERCOMPUTING | 2014年 / 68卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Power management; High-density servers; Web server; Power optimization; Cluster;
D O I
10.1007/s11227-014-1141-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work investigates power and performance trade-offs for Web servers on a state-of-the-art, high-density, power-efficient SeaMicro SM15k cluster by AMD. We relied on the concept of virtual power states (VPSs), a combination of CPU utilization rate to the P/C power states available in modern processors, and on our global optimization algorithm called Slack Recovery, to deploy an adaptive global power management system in a production environment. The main contributions of this paper are twofold. First, it presents the Slack Recovery algorithm deployed on a real cluster, composed of 25 SeaMicro nodes. The algorithm finds a P-state and a utilization rate for each CPU node to minimize power under a minimum performance requirement. Second, it proposes a novel mechanism to control utilization rates in each server, a key aspect on our power/performance optimization system which enables the implementation of the VPS concept in practice. Experimental results show that our Slack Recovery-based system can reduce up to 6.7 % of the power consumption when compared to policies usually deployed in SeaMicro production systems.
引用
收藏
页码:1088 / 1112
页数:25
相关论文
共 50 条
  • [21] An adaptive particle swarm optimization for global optimization
    Zhen, Ziyang
    Wang, Zhisheng
    Liu, Yuanyuan
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 8 - +
  • [22] POWER SERVERS
    CATCHINGS, B
    VANNAME, ML
    [J]. BYTE, 1990, 15 (07): : 167 - 170
  • [23] Performance Evaluation and Dynamic Optimization of Speed Scaling on Web Servers in Cloud Computing
    Yuan Tian
    Chuang Lin
    Zhen Chen
    Jianxiong Wan
    Xuehai Peng
    [J]. Tsinghua Science and Technology, 2013, 18 (03) : 298 - 307
  • [24] Performance Evaluation and Dynamic Optimization of Speed Scaling on Web Servers in Cloud Computing
    Tian, Yuan
    Lin, Chuang
    Chen, Zhen
    Wan, Jianxiong
    Peng, Xuehai
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2013, 18 (03) : 298 - 307
  • [25] Power management of distributed Web servers by controlling server power state and traffic prediction for QoS
    Imada, Takayuki
    Sato, Mitsuhisa
    Hotta, Yoshihiko
    Kimura, Hideaki
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 854 - 861
  • [26] PARTIC: Power-Aware Response Time Control for Virtualized Web Servers
    Wang, Yefu
    Wang, Xiaorui
    Chen, Ming
    Zhu, Xiaoyun
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (02) : 323 - 336
  • [27] Quantum virtual machine: power and performance management in virtualized web servers clusters
    André Monteiro
    Orlando Loques
    [J]. Cluster Computing, 2019, 22 : 205 - 221
  • [28] Using adaptive priority scheduling for service differentiation in QoS-aware web servers
    Teixeira, MM
    Santana, MJ
    Santana, RHC
    [J]. CONFERENCE PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, 2004, : 279 - 285
  • [29] A Self-Adaptive Architecture to Control the Performance of Multi-host Web Servers]
    Lin, Xiao-zhu
    Wu, Hai-yan
    Jiang, Dong-xing
    Ren, Feng-yuan
    [J]. 2007 AUSTRALASIANTELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE, 2007, : 250 - +
  • [30] Using adaptive priority controls for service differentiation in QoS-enabled web servers
    Teixeira, MM
    Santana, MJ
    Santana, RHC
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS, 2004, 3036 : 537 - 540