Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation

被引:16
|
作者
Ha, Seung-Yeal [1 ,2 ]
Xiao, Qinghua [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
基金
新加坡国家研究基金会;
关键词
SYNCHRONIZATION; OSCILLATORS; POPULATIONS; SYSTEMS; LIMIT;
D O I
10.1016/j.jde.2015.03.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a nonlinear stability estimate of the incoherent solution to the Kuramoto-Sakaguchi equation using energy estimates. Our global stability analysis does not require the amplitude of the solution to be small, as long as the ratio of diffusion strength to coupling strength is sufficiently large. We also show that the Kuramoto-Sakaguchi equation is L-2-contractive in the perturbed regime of the incoherent solution. Moreover, we establish the L-infinity-convergence in any finite time interval from the Kuramoto-Sakaguchi equation to the Kuramoto equation as the diffusion coefficient goes to zero. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2430 / 2457
页数:28
相关论文
共 50 条
  • [21] Traveling Speed of Clusters in the Kuramoto-Sakaguchi Model
    Jungzae Choi
    MooYoung Choi
    Byung-Gook Yoon
    Journal of the Korean Physical Society, 2018, 72 : 342 - 347
  • [22] Synchronization of Kuramoto-Sakaguchi model with the distributed time interactions
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Moon, Sunghwan
    CHAOS SOLITONS & FRACTALS, 2024, 179
  • [23] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) : 978 - 1022
  • [24] Metastability of multi-population Kuramoto-Sakaguchi oscillators
    Li, Bojun
    Uchida, Nariya
    CHAOS, 2025, 35 (01)
  • [25] Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter
    Chen, Bolun
    Engelbrecht, Jan R.
    Mirollo, Renato
    CHAOS, 2019, 29 (01)
  • [26] A stochastic approximation for the finite-size Kuramoto-Sakaguchi model
    Yue, Wenqi
    Gottwald, Georg A.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 468
  • [27] Multiple Self-Locking in the Kuramoto-Sakaguchi System with Delay
    Wolfrum, Matthias
    Yanchuk, Serhiy
    D'Huys, Otti
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (03): : 1709 - 1725
  • [28] Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model
    Brede, Markus
    Kalloniatis, Alexander C.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [29] Mediated Remote Synchronization of Kuramoto-Sakaguchi Oscillators: The Number of Mediators Matters
    Qin, Yuzhen
    Cao, Ming
    Anderson, Brian D. O.
    Bassett, Danielle S.
    Pasqualetti, Fabio
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (03): : 767 - 772
  • [30] Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity
    Banerjee, Amitava
    Acharyya, Muktish
    PHYSICAL REVIEW E, 2016, 94 (02)