Soil Moisture Retrieval during the Wheat Growth Cycle Using SAR and Optical Satellite Data

被引:2
|
作者
Zhang, Min [1 ,2 ]
Lang, Fengkai [1 ,2 ]
Zheng, Nanshan [1 ,2 ]
机构
[1] China Univ Min & Technol, Jiangsu Key Lab Resources & Environm Informat Eng, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
soil moisture; AIEM; modified water cloud model; Oh model; effective roughness;
D O I
10.3390/w13020135
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objective of this paper is to propose a combined approach for the high-precision mapping of soil moisture during the wheat growth cycle based on synthetic aperture radar (SAR) (Radarsat-2) and optical satellite data (Landsat-8). For this purpose, the influence of vegetation was removed from the total backscatter by using the modified water cloud model (MWCM), which takes the vegetation fraction (f(veg)) into account. The VV/VH polarization radar backscattering coefficients database was established by a numerical simulation based on the advanced integrated equation model (AIEM) and the cross-polarized ratio of the Oh model. Then the empirical relationship between the bare soil backscattering coefficient and both the soil moisture and the surface roughness was developed by regression analysis. The surface roughness in this paper was described by using the effective roughness parameter and the combined roughness form. The experimental results revealed that using effective roughness as the model input instead of in-situ measured roughness can obtain soil moisture with high accuracy and effectively avoid the uncertainty of roughness measurement. The accuracy of soil moisture inversion could be improved by introducing vegetation fraction on the basis of the water cloud model (WCM). There was a good correlation between the estimated soil moisture and the observed values, with a root mean square error (RMSE) of about 4.14% and the coefficient of determination (R-2) about 0.7390.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Surface soil moisture retrieval using L-band SMAP SAR data and its validation
    Kim, S.
    van Zyl, J.
    Johnson, J.
    Moghaddam, M.
    Tsang, L.
    Colliander, A.
    Dunbar, S.
    Jackson, T.
    Jaruwatanadilok, S.
    West, R.
    Berg, A.
    Caldwell, T.
    Cosh, M.
    Lopez-Baeza, E.
    Thibeault, M.
    Walker, J.
    Entekhabi, D.
    Yueh, S.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 143 - 146
  • [42] SOIL MOISTURE RETRIEVAL USING A MODIFIED DECOMPOSITION METHOD AND MULTI-INCIDENCE POLARIMETRIC SAR DATA
    Shi, Hongtao
    Yang, Jie
    Zhao, Lingli
    Shi, Lei
    Li, Pingxiang
    Zhao, Jinqi
    Liu, Wensong
    Wang, Lei
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6957 - 6960
  • [43] Ocean Salinity Retrieval and Prediction for Soil Moisture Active Passive Satellite Using Data-to-Data Translation
    Han, Kyung-Hoon
    Hong, Sungwook
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] CROSS-COMPARISON OF THREE SAR SOIL MOISTURE RETRIEVAL ALGORITHMS USING SYNTHETIC AND EXPERIMENTAL DATA
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Mattia, F.
    Cartus, O.
    Davidson, M.
    Al-Khaldi, M.
    Johnson, J.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6123 - 6126
  • [45] Soil Moisture Retrieval from the Chinese GF-3 Satellite and Optical Data over Agricultural Fields
    Zhang, Linlin
    Meng, Qingyan
    Yao, Shun
    Wang, Qiao
    Zeng, Jiangyuan
    Zhao, Shaohua
    Ma, Jianwei
    [J]. SENSORS, 2018, 18 (08)
  • [46] Soil moisture estimation using synergy of optical, SAR and topographic data with Gaussian Process Regression
    Stamenkovic, J.
    Notarnicola, C.
    Spindler, N.
    Cuozzo, G.
    Bertoldi, G.
    Della Chiesa, S.
    Niedrist, G.
    Greifeneder, F.
    Tuia, D.
    Borgeaud, M.
    Thiran, J-Ph
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XIV, 2014, 9243
  • [47] The development of HJ SAR soil moisture retrieval algorithm
    Du, Jinyang
    Shi, Jiancheng
    Sun, Ruijing
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (14) : 3691 - 3705
  • [48] SOIL MOISTURE RETRIEVAL UNDER AGRICULTURAL VEGETATION USING FULLY POLARIMETRIC SAR
    Jagdhuber, Thomas
    Hajnsek, Irena
    Papathanassiou, Konstantinos P.
    Bronstert, Axel
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1481 - 1484
  • [49] Soil moisture retrieval in the Tibetan plateau using optical and passive microwave remote sensing data
    Yang Ting
    Chen Xiu-Wan
    Wan Wei
    Huang Zhao-Qiang
    Yang Zhen-Yu
    Jiang Lu-Lu
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (07): : 2556 - 2567
  • [50] Soil Moisture Retrieval in Agricultural Fields Using Adaptive Model-Based Polarimetric Decomposition of SAR Data
    He, Lian
    Panciera, Rocco
    Tanase, Mihai A.
    Walker, Jeffrey P.
    Qin, Qiming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4445 - 4460