Anatase-TiO2/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

被引:23
|
作者
Liu, Jinlong [1 ,2 ]
Feng, Haibo [1 ]
Jiang, Jianbo [1 ]
Qian, Dong [1 ,2 ]
Li, Junhua [1 ]
Peng, Sanjun [1 ]
Liu, Youcai [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxide materials; Composite materials; Nanostructured materials; Electrode materials; Chemical synthesis; ANATASE TIO2 NANOSHEETS; CARBON NANOTUBES; NANOSTRUCTURED TIO2; ENERGY-STORAGE; LI; PERFORMANCE; COMPOSITE; INTERCALATION; NANOPARTICLE; CHALLENGES;
D O I
10.1016/j.jallcom.2014.03.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anatase-TiO2/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO2 nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g(-1) is achieved even at a current density of 10 A g(-1) (60 C). After 100 cycles at 0.1 A g(-1), it shows good capacity retention of 185 mA h g(-1) with an outstanding coulombic efficiency up to 99%. Such superior Li+ storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO2 and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 50 条
  • [1] Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries
    Qiu, Jingxia
    Lai, Chao
    Gray, Evan
    Li, Sheng
    Qiu, Siyao
    Strounina, Ekaterina
    Sun, Chenghua
    Zhao, Huijun
    Zhang, Shanqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (18) : 6353 - 6358
  • [2] CNTs grown on oxygen-deficient anatase TiO2-δ as high-rate composite electrode material for lithium ion batteries
    Ventosa, Edgar
    Chen, Peirong
    Schuhmann, Wolfgang
    Xia, Wei
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 25 : 132 - 135
  • [3] Pillared Graphene Sheets with High-Rate Performance as Anode Material for Lithium-Ion Batteries
    Hu, Xi
    Wang, De-Ping
    Xia, Xiao-Hong
    Chen, Yu-Xi
    Liu, Hong-Bo
    Gu, Zhi-Qiang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (11) : 7269 - 7277
  • [4] Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries
    Chen, Long
    Wang, Zhiyuan
    He, Chunnian
    Zhao, Naiqin
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) : 9537 - 9545
  • [5] Synthesis of NiO/Ni nanocomposite anode material for high rate lithium-ion batteries
    Xia, Qing
    Zhao, Hailei
    Teng, Yongqiang
    Du, Zhihong
    Wang, Jie
    Zhang, Tianhou
    MATERIALS LETTERS, 2015, 142 : 67 - 70
  • [6] Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries
    Xu, Jinwei
    Jia, Caihong
    Cao, Bin
    Zhang, W. F.
    ELECTROCHIMICA ACTA, 2007, 52 (28) : 8044 - 8047
  • [7] A stable TiO2-graphene nanocomposite anode with high rate capability for lithium-ion batteries
    Farooq, Umer
    Ahmed, Faheem
    Pervez, Syed Atif
    Rehman, Sarish
    Pope, Michael A.
    Fichtner, Maximilian
    Roberts, Edward P. L.
    RSC ADVANCES, 2020, 10 (50) : 29975 - 29982
  • [8] High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium-ion batteries
    Cai, Dandan
    Li, Dongdong
    Wang, Suqing
    Zhu, Xuefeng
    Yang, Weishen
    Zhang, Shanqing
    Wang, Haihui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 561 : 54 - 58
  • [9] Europium modified TiO2 as a high-rate long-cycle life anode material for lithium-ion batteries
    Li, Jian
    Cai, Yanjun
    Yao, Xiang
    Tian, Hualing
    Su, Zhi
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (05) : 2266 - 2271
  • [10] An investigation of Cu-ZrO2-TiO2/CNTs anode material for lithium-ion batteries
    Yuan, Yuan
    Shao, Yuanming
    Zhou, Xiaoping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 11092 - 11108