High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium-ion batteries

被引:74
|
作者
Cai, Dandan [1 ]
Li, Dongdong [1 ]
Wang, Suqing [1 ]
Zhu, Xuefeng [2 ]
Yang, Weishen [2 ]
Zhang, Shanqing [3 ,4 ]
Wang, Haihui [1 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou, Guangdong, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian, Peoples R China
[3] Griffith Univ, Ctr Clean Environm & Energy, Environm Futures Ctr, Griffith, Qld 4222, Australia
[4] Griffith Univ, Griffith Sch Environm, Griffith, Qld 4222, Australia
关键词
TiO2; Nitrogen-doped graphene; Anode material; Lithium-ion batteries; NITROGEN-DOPED GRAPHENE; ELECTROCHEMICAL PERFORMANCE; PHOTOCATALYTIC ACTIVITY; CYCLING PERFORMANCE; TIO2; NANOSHEETS; CAPACITY; NANOSTRUCTURES; SHEETS; NANOCRYSTALS;
D O I
10.1016/j.jallcom.2013.01.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
TiO2/nitrogen-doped graphene nanocomposite was synthesized by a facile gas/liquid interface reaction. The structure and morphology of the sample were analyzed by X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The results indicate that nitrogen atoms were successfully doped into graphene sheets. The TiO2 nanoparticles (8-13 nm in size) were homogenously anchored on the nitrogen-doped graphene sheets through gas/liquid interface reaction. The as-prepared TiO2/nitrogen-doped graphene nanocomposite shows a better electrochemical performance than the TiO2/graphene nanocomposite and the bare TiO2 nanoparticles. TiO2/nitrogen-doped graphene nanocomposite exhibits excellent cycling stability and shows high capacity of 136 mAh g(-1) (at a current density of 1000 mA g(-1)) after 80 cycles. More importantly, a high reversible capacity of 109 mAh g(-1) can still be obtained even at a super high current density of 5000 mA g(-1). The superior electrochemical performance is attributed to the good electronic conductivity introduced by the nitrogen-doped graphene sheets and the positive synergistic effect between nitrogen-doped graphene sheets and TiO2 nanoparticles. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [1] TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries
    Li, Dan
    Shi, Dongqi
    Liu, Zongwen
    Liu, Huakun
    Guo, Zaiping
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (05)
  • [2] TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries
    Dan Li
    Dongqi Shi
    Zongwen Liu
    Huakun Liu
    Zaiping Guo
    Journal of Nanoparticle Research, 2013, 15
  • [3] Nitrogen-doped carbon coated anatase TiO2 anode material for lithium-ion batteries
    Tan, Lei
    Cao, Chengying
    Yang, Huijun
    Wang, Baofeng
    Li, Lei
    MATERIALS LETTERS, 2013, 109 : 195 - 198
  • [4] A stable TiO2-graphene nanocomposite anode with high rate capability for lithium-ion batteries
    Farooq, Umer
    Ahmed, Faheem
    Pervez, Syed Atif
    Rehman, Sarish
    Pope, Michael A.
    Fichtner, Maximilian
    Roberts, Edward P. L.
    RSC ADVANCES, 2020, 10 (50) : 29975 - 29982
  • [5] A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries
    Wang, Jie
    Shen, Laifa
    Li, Hongsen
    Wang, Xiaoyan
    Nie, Ping
    Ding, Bing
    Xu, Guiyin
    Dou, Hui
    Zhang, Xiaogang
    ELECTROCHIMICA ACTA, 2014, 133 : 209 - 216
  • [6] Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries
    Cai, Dandan
    Wang, Suqing
    Lian, Peichao
    Zhu, Xuefeng
    Li, Dongdong
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2013, 90 : 492 - 497
  • [7] TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries
    唐谊平
    王诗明
    谭晓旭
    侯广亚
    郑国渠
    Journal of Central South University, 2014, 21 (05) : 1714 - 1718
  • [8] TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries
    Yi-ping Tang
    Shi-ming Wang
    Xiao-xu Tan
    Guang-ya Hou
    Guo-qu Zheng
    Journal of Central South University, 2014, 21 : 1714 - 1718
  • [9] TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries
    Tang Yi-ping
    Wang Shi-ming
    Tan Xiao-xu
    Hou Guang-ya
    Zheng Guo-qu
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (05) : 1714 - 1718
  • [10] Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries
    Gao, Yang
    Qiu, Xiaotao
    Wang, Xiuli
    Chen, Xianchun
    Gu, Aiqun
    Yu, Zili
    NANOTECHNOLOGY, 2020, 31 (15)