Numerical study on stress in a solid wall caused by the collapse of a cavitation bubble cloud in hydraulic fluid

被引:4
|
作者
Okita, Kohei [1 ]
Miyamoto, Yuusuke [2 ]
Furukawa, Teruyuki [2 ]
Takagi, Shu [3 ]
机构
[1] Nihon Univ, Coll Ind Technol, Dept Mech Engn, 1-2-1 Izumi, Narashino, Chiba 2758575, Japan
[2] KOMATSU Ltd, 400 Yokokura Shinden, Oyama, Tochigi 3238558, Japan
[3] Univ Tokyo, Sch Engn, Dept Mech Engn, 7-3-1 Hongo, Bunkyo, Tokyo 1138754, Japan
关键词
Cavitation; Bubble cloud; Fluid-structure coupling; Hydraulic fluid; COMPRESSIBLE LIQUID; SHOCK-WAVES; OSCILLATIONS; DYNAMICS; SIMULATION; PRESSURE; NEIGHBORHOOD; MECHANISMS; CLUSTERS; BEHAVIOR;
D O I
10.1016/j.ijmultiphaseflow.2021.103965
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The stress in a solid due to the collapse of a bubble cloud in hydraulic fluid is investigated by the numerical simulation, which considers the fluid-structure coupling and employs the bubbly flow model with Euler-Lagrange method. The dynamics of the bubble at the subgrid scale is described by the Keller-Miksis equation. Heat transfer at the bubble interface is considered to reproduce thermal damping effect. As the result of the fluid-structure coupling simulation, the high von Mises stress region is observed in the solid due to the collapse of the bubble cloud attached on the solid surface, and the propagation of longitudinal and transverse waves in the solid is reproduced. As the standoff distance Y-C from the solid surface to the center of the bubble cloud decreases, the peak von Mises stress in the solid increases, taking a maximum at Y-C = 0.4R(C), and then decreases. Thus, the peak von Mises stress is highest under the condition that the bottom quarter of the bubble cloud is on the wall. Due to the increase of the initial void fraction and the decrease of the initial bubble radius in the bubble cloud, the collapse pressure of the bubble cloud increases. Under certain conditions, the peak von Mises stress can be higher than the 0.2% yield stress value of 250MPa for a cast iron. This is expected to induce cavitation erosion of the solid surface.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Numerical simulation of micro bubble collapse near solid wall in fluent environment
    Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China
    不详
    Mocaxue Xuebao, 2008, 4 (311-315):
  • [32] Numerical study of impact phenomena due to cavitation bubble collapse on metals and polymers
    Firly, Rubani
    Inaba, Kazuaki
    Triawan, Farid
    Kishimoto, Kikuo
    Nakamoto, Hiroaki
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2023, 101 : 257 - 272
  • [33] Cavitation bubble collapse near a rigid wall with an oil layer
    Ohl, Siew-Wan
    Reese, Hendrik
    Ohl, Claus -Dieter
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 174
  • [34] THE FINAL STAGE OF THE COLLAPSE OF A CAVITATION BUBBLE NEAR A RIGID WALL
    ZHANG, SG
    DUNCAN, JH
    CHAHINE, GL
    JOURNAL OF FLUID MECHANICS, 1993, 257 : 147 - 181
  • [35] Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall
    Yang, Xiaobin
    Liu, Cheng
    Wan, Decheng
    Hu, Changhong
    PHYSICS OF FLUIDS, 2021, 33 (07)
  • [36] Numerical and Experimental Study of Bubble Impact on a Solid Wall
    Ni, B. Y.
    Zhang, A. M.
    Wu, G. X.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [37] THE COLLAPSE OF A SPHEROIDAL BUBBLE NEAR A SOLID WALL
    SHIMA, A
    SATO, Y
    JOURNAL DE MECANIQUE, 1981, 20 (02): : 253 - 271
  • [38] Numerical Investigations on Temperature Distribution and Evolution of Cavitation Bubble Collapsed Near Solid Wall
    Shan, Minglei
    Yang, Yu
    Kan, Xuefen
    Shu, Fangyong
    Han, Qingbang
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [39] Numerical investigation on the impact pressure induced by a cavitation bubble collapsing near a solid wall
    Zhao, Di
    Deng, Fuqiang
    Zhang, Lingxin
    PHYSICS OF FLUIDS, 2023, 35 (04)
  • [40] Study of wall wettability effects on cavitation bubble collapse using lattice Boltzmann method
    Yuan, Hao
    Zhang, Jianbao
    Zhou, Jiayu
    Tan, Jiawan
    Wang, Zhaobing
    Gan, Weidong
    AIP ADVANCES, 2021, 11 (06)