Using Feedback Control to Control Rotor Flux and Torque of the DFIG-Based Wind Power System

被引:0
|
作者
Almakki, Ali Nadhim Jbarah [1 ,2 ]
机构
[1] Univ Diyala, Coll Engn, Dept Mat Engn, Diyala, Iraq
[2] Kazan Natl Res Tech Univ Named AN Tupolev KAI, Dept Elect Equipment, Kazan, Russia
关键词
doubly-fed induction generator; direct torque control; feedback control; total harmonic distortion; wind power systems; INDUCTION-MOTOR; SLIDING MODE;
D O I
10.46604/ijeti.2022.10471
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Direct torque control (DTC) is a method of controlling electrical machines that are widely used, and this is due to its simplicity and ease of use. However, this method has several issues, such as torque, rotor flux, and current fluctuations. To overcome these shortcomings and improve the characteristics and robustness of the DTC strategy of the doubly-fed induction generator (DFIG), a new DTC scheme based on the feedback control method (FCM) and space vector modulation (SVM) is proposed. In the proposed DTC technique, a proportional-integral controller based on feedback control theory is used to control and regulate the torque and rotor flux of the DFIG. On the other hand, the SVM technique is used to control the rotor side converter (RSC) to obtain a high-quality current. The simulation result shows that the proposed DTC technique has the advantages of faster dynamics and reduced harmonic distortion of current compared to the conventional technique.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Control strategy for DFIG-based wind farm in microgrid
    Li, G., 1600, Electric Power Automation Equipment Press (33):
  • [42] A comprehensive sensorless control of DFIG-based wind turbines
    Abedinzadeh, Taher
    Tohidi, Sajjad
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2016, 35 (01) : 27 - 43
  • [43] Multimode Control of a DFIG-Based Wind-Power Unit for Remote Applications
    Bhuiyan, Faruk A.
    Yazdani, Amirnaser
    IEEE TRANSACTIONS ON POWER DELIVERY, 2009, 24 (04) : 2079 - 2089
  • [44] Reactive Power Control of DFIG-Based Wind Turbine during Voltage Sag
    Lima, Francisco Kleber de A.
    Dantas, Joacillo Luz
    Branco, Carlos Gustavo C.
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4321 - 4325
  • [45] Maximum Power Control of Grid-connected DFIG-Based Wind Systems
    Sylla, Abdoulaye Mamadie
    Doumbia, Mamadou Lamine
    2012 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2012, : 267 - 273
  • [46] Virtual Shaft Control of DFIG-Based Wind Turbines for Power Oscillation Suppression
    Zhang, Xiangyu
    Liu, Huazhi
    Fu, Yuan
    Li, Yonggang
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2022, 13 (04) : 2316 - 2330
  • [47] Model predictive control of DFIG-based wind turbines
    Kaneko, Akira
    Hara, Naoyuki
    Konishi, Keiji
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2264 - 2269
  • [48] A new hybrid control scheme for minimizing torque and flux ripple for DFIG-based WES under random change in wind speed
    Jaladi, Kiran Kumar
    Sandhu, Kanwarjit Singh
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2019, 29 (04)
  • [49] Rotor Current Control Design for DFIG-based Wind Turbine Using PI, FLC and Fuzzy PI Controllers
    Al Zabin, O.
    Ismael, A.
    2019 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2019,
  • [50] Experimental Investigation of DFIG-based Wind Energy Conversion System Using Fuzzy Logic Control
    Hallouz M.
    Kabeche N.
    Moulahoum S.
    Kechidi Z.
    Periodica polytechnica Electrical engineering and computer science, 2023, 67 (03): : 260 - 267