Transcript expression-aware annotation improves rare variant interpretation

被引:111
|
作者
Cummings, Beryl B. [1 ,2 ,3 ]
Karczewski, Konrad J. [1 ,2 ]
Kosmicki, Jack A. [1 ,2 ,4 ]
Seaby, Eleanor G. [1 ,2 ,5 ]
Watts, Nicholas A. [1 ,2 ]
Singer-Berk, Moriel [1 ]
Mudge, Jonathan M. [6 ]
Karjalainen, Juha [1 ,2 ,7 ]
Satterstrom, F. Kyle [1 ,2 ,7 ]
O'Donnell-Luria, Anne H. [1 ,8 ,9 ]
Poterba, Timothy [1 ,2 ,7 ]
Seed, Cotton [2 ,7 ]
Solomonson, Matthew [1 ,2 ]
Alfoldi, Jessica [1 ,2 ]
Daly, Mark J. [1 ,2 ]
MacArthur, Daniel G. [1 ,2 ,10 ,11 ,12 ]
机构
[1] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[2] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA
[3] Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA
[4] Harvard Med Sch, Program Bioinformat & Integrat Genom, Boston, MA 02115 USA
[5] Univ Hosp Southampton, Genom Informat Grp, Southampton, Hants, England
[6] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge, England
[7] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[8] Boston Childrens Hosp, Div Genet & Genom, Boston, MA USA
[9] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[10] Garvan Inst Med Res, Ctr Populat Genom, Syndney, Australia
[11] UNSW Sydney, Sydney, NSW, Australia
[12] Murdoch Childrens Res Inst, Ctr Populat Genom, Melbourne, Vic, Australia
基金
美国国家卫生研究院;
关键词
GENES; ARRHYTHMIA; MUTATIONS;
D O I
10.1038/s41586-020-2329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The acceleration of DNA sequencing in samples from patients and population studies has resulted in extensive catalogues of human genetic variation, but the interpretation of rare genetic variants remains problematic. A notable example of this challenge is the existence of disruptive variants in dosage-sensitive disease genes, even in apparently healthy individuals. Here, by manual curation of putative loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation Database (gnomAD)(1), we show that one explanation for this paradox involves alternative splicing of mRNA, which allows exons of a gene to be expressed at varying levels across different cell types. Currently, no existing annotation tool systematically incorporates information about exon expression into the interpretation of variants. We develop a transcript-level annotation metric known as the 'proportion expressed across transcripts', which quantifies isoform expression for variants. We calculate this metric using 11,706 tissue samples from the Genotype Tissue Expression (GTEx) project(2) and show that it can differentiate between weakly and highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum disorder and intellectual disability or developmental disorders to show that pLoF variants in weakly expressed regions have similar effect sizes to those of synonymous variants, whereas pLoF variants in highly expressed exons are most strongly enriched among cases. Our annotation is fast, flexible and generalizable, making it possible for any variant file to be annotated with any isoform expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the analysis of rare variant burden in complex disorders, and the curation and prioritization of variants in recall-by-genotype studies.
引用
收藏
页码:452 / +
页数:11
相关论文
共 50 条
  • [31] Establishing and validating regulatory regions for variant annotation and expression analysis
    Alexander Kaplun
    Mathias Krull
    Karthick Lakshman
    Volker Matys
    Birgit Lewicki
    Jennifer D. Hogan
    BMC Genomics, 17
  • [32] Application of RNA sequencing evidence improves equity in variant interpretation
    Horton, Carolyn
    Hoang, Lily
    LaDuca, Holly
    Lo, Min-Tzu
    Zimmermann, Heather
    Cass, Ashley
    Conner, Blair
    Abualkheir, Nelly
    Grzybowski, Jessica
    Durda, Kate
    Pilarski, Robert
    Chao, Elizabeth
    Karam, Rachid
    GENETICS IN MEDICINE, 2022, 24 (03) : S363 - S364
  • [33] Systematic reanalysis of genomic data improves quality of variant interpretation
    Hiatt, S. M.
    Amaral, M. D.
    Bowling, K. M.
    Finnila, C. R.
    Thompson, M. L.
    Gray, D. E.
    Lawlor, J. M. J.
    Cochran, J. N.
    Bebin, E. M.
    Brothers, K. B.
    East, K. M.
    Kelley, W. V.
    Lamb, N. E.
    Levy, S. E.
    Lose, E. J.
    Neu, M. B.
    Rich, C. A.
    Simmons, S.
    Myers, R. M.
    Barsh, G. S.
    Cooper, G. M.
    CLINICAL GENETICS, 2018, 94 (01) : 174 - 178
  • [34] Geometric Interpretation of Gene Expression by Sparse Reconstruction of Transcript Profiles
    Prat, Yosef
    Fromer, Menachem
    Linial, Michal
    Linial, Nathan
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, 2011, 6577 : 355 - +
  • [35] Salmon provides fast and bias-aware quantification of transcript expression
    Rob Patro
    Geet Duggal
    Michael I Love
    Rafael A Irizarry
    Carl Kingsford
    Nature Methods, 2017, 14 : 417 - 419
  • [36] Salmon provides fast and bias-aware quantification of transcript expression
    Patro, Rob
    Duggal, Geet
    Love, Michael I.
    Irizarry, Rafael A.
    Kingsford, Carl
    NATURE METHODS, 2017, 14 (04) : 417 - +
  • [37] Adjusting for common variant polygenic scores improves yield in rare variant association analyses
    Jurgens, Sean J. J.
    Pirruccello, James P. P.
    Choi, Seung Hoan
    Morrill, Valerie N. N.
    Chaffin, Mark
    Lubitz, Steven A. A.
    Lunetta, Kathryn L. L.
    Ellinor, Patrick T. T.
    NATURE GENETICS, 2023, 55 (04) : 544 - +
  • [38] Adjusting for common variant polygenic scores improves yield in rare variant association analyses
    Sean J. Jurgens
    James P. Pirruccello
    Seung Hoan Choi
    Valerie N. Morrill
    Mark Chaffin
    Steven A. Lubitz
    Kathryn L. Lunetta
    Patrick T. Ellinor
    Nature Genetics, 2023, 55 : 544 - 548
  • [39] iVar, an Interpretation-Oriented Tool to Manage the Update and Revision of Variant Annotation and Classification
    Castellano, Sara
    Cestari, Federica
    Faglioni, Giovanni
    Tenedini, Elena
    Marino, Marco
    Artuso, Lucia
    Manfredini, Rossella
    Luppi, Mario
    Trenti, Tommaso
    Tagliafico, Enrico
    GENES, 2021, 12 (03)
  • [40] NCAD v1.0: a database for non-coding variant annotation and interpretation
    Xiaoshu Feng
    Sihan Liu
    Ke Li
    Fengxiao Bu
    Huijun Yuan
    Journal of Genetics and Genomics, 2024, 51 (02) : 230 - 242