Transcript expression-aware annotation improves rare variant interpretation

被引:111
|
作者
Cummings, Beryl B. [1 ,2 ,3 ]
Karczewski, Konrad J. [1 ,2 ]
Kosmicki, Jack A. [1 ,2 ,4 ]
Seaby, Eleanor G. [1 ,2 ,5 ]
Watts, Nicholas A. [1 ,2 ]
Singer-Berk, Moriel [1 ]
Mudge, Jonathan M. [6 ]
Karjalainen, Juha [1 ,2 ,7 ]
Satterstrom, F. Kyle [1 ,2 ,7 ]
O'Donnell-Luria, Anne H. [1 ,8 ,9 ]
Poterba, Timothy [1 ,2 ,7 ]
Seed, Cotton [2 ,7 ]
Solomonson, Matthew [1 ,2 ]
Alfoldi, Jessica [1 ,2 ]
Daly, Mark J. [1 ,2 ]
MacArthur, Daniel G. [1 ,2 ,10 ,11 ,12 ]
机构
[1] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[2] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA
[3] Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA
[4] Harvard Med Sch, Program Bioinformat & Integrat Genom, Boston, MA 02115 USA
[5] Univ Hosp Southampton, Genom Informat Grp, Southampton, Hants, England
[6] European Bioinformat Inst, European Mol Biol Lab, Wellcome Genome Campus, Cambridge, England
[7] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[8] Boston Childrens Hosp, Div Genet & Genom, Boston, MA USA
[9] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[10] Garvan Inst Med Res, Ctr Populat Genom, Syndney, Australia
[11] UNSW Sydney, Sydney, NSW, Australia
[12] Murdoch Childrens Res Inst, Ctr Populat Genom, Melbourne, Vic, Australia
基金
美国国家卫生研究院;
关键词
GENES; ARRHYTHMIA; MUTATIONS;
D O I
10.1038/s41586-020-2329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The acceleration of DNA sequencing in samples from patients and population studies has resulted in extensive catalogues of human genetic variation, but the interpretation of rare genetic variants remains problematic. A notable example of this challenge is the existence of disruptive variants in dosage-sensitive disease genes, even in apparently healthy individuals. Here, by manual curation of putative loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation Database (gnomAD)(1), we show that one explanation for this paradox involves alternative splicing of mRNA, which allows exons of a gene to be expressed at varying levels across different cell types. Currently, no existing annotation tool systematically incorporates information about exon expression into the interpretation of variants. We develop a transcript-level annotation metric known as the 'proportion expressed across transcripts', which quantifies isoform expression for variants. We calculate this metric using 11,706 tissue samples from the Genotype Tissue Expression (GTEx) project(2) and show that it can differentiate between weakly and highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum disorder and intellectual disability or developmental disorders to show that pLoF variants in weakly expressed regions have similar effect sizes to those of synonymous variants, whereas pLoF variants in highly expressed exons are most strongly enriched among cases. Our annotation is fast, flexible and generalizable, making it possible for any variant file to be annotated with any isoform expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the analysis of rare variant burden in complex disorders, and the curation and prioritization of variants in recall-by-genotype studies.
引用
收藏
页码:452 / +
页数:11
相关论文
共 50 条
  • [1] Transcript expression-aware annotation improves rare variant interpretation
    Beryl B. Cummings
    Konrad J. Karczewski
    Jack A. Kosmicki
    Eleanor G. Seaby
    Nicholas A. Watts
    Moriel Singer-Berk
    Jonathan M. Mudge
    Juha Karjalainen
    F. Kyle Satterstrom
    Anne H. O’Donnell-Luria
    Timothy Poterba
    Cotton Seed
    Matthew Solomonson
    Jessica Alföldi
    Mark J. Daly
    Daniel G. MacArthur
    Nature, 2020, 581 : 452 - 458
  • [2] Author Correction: Transcript expression-aware annotation improves rare variant interpretation
    Beryl B. Cummings
    Konrad J. Karczewski
    Jack A. Kosmicki
    Eleanor G. Seaby
    Nicholas A. Watts
    Moriel Singer-Berk
    Jonathan M. Mudge
    Juha Karjalainen
    F. Kyle Satterstrom
    Anne H. O’Donnell-Luria
    Timothy Poterba
    Cotton Seed
    Matthew Solomonson
    Jessica Alföldi
    Mark J. Daly
    Daniel G. MacArthur
    Nature, 2021, 590 : E54 - E54
  • [3] Transcript expression-aware annotation improves rare variant interpretation (vol 581, pg 452, 2020)
    Cummings, Beryl B.
    Karczewski, Konrad J.
    Kosmicki, Jack A.
    Seaby, Eleanor G.
    Watts, Nicholas A.
    Singer-Berk, Moriel
    Mudge, Jonathan M.
    Karjalainen, Juha
    Satterstrom, F. Kyle
    O'Donnell-Luria, Anne H.
    Poterba, Timothy
    Seed, Cotton
    Solomonson, Matthew
    Alfoldi, Jessica
    Daly, Mark J.
    MacArthur, Daniel G.
    NATURE, 2021, 590 (7846) : E54 - E54
  • [4] Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data
    Hui Yu
    Feng Wang
    Kang Tu
    Lu Xie
    Yuan-Yuan Li
    Yi-Xue Li
    BMC Bioinformatics, 8
  • [5] Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data
    Yu, Hui
    Wang, Feng
    Tu, Kang
    Xie, Lu
    Li, Yuan-Yuan
    Li, Yi-Xue
    Agrawal, Sunil
    BMC BIOINFORMATICS, 2007, 8 (1)
  • [6] Facial Expression-Aware Face Frontalization
    Wang, Yiming
    Yu, Hui
    Dong, Junyu
    Stevens, Brett
    Liu, Honghai
    COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 375 - 388
  • [7] English Multiword Expression-aware Dependency Parsing Including Named Entities
    Kato, Akihiko
    Shindo, Hiroyuki
    Matsumoto, Yuji
    PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 2, 2017, : 427 - 432
  • [8] EXPRESSION-AWARE FACE RECONSTRUCTION VIA A DUAL-STREAM NETWORK
    Chai, Xiaoyu
    Chen, Jun
    Liang, Chao
    Xu, Dongshu
    Lin, Chia-Wen
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [9] Expression-aware video inpainting for HMD removal in XR applications
    Lohesara, Fatemeh Ghorbani
    Eguiazarian, Karen
    Knorr, Sebastian
    20TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, CVMP 2023, 2023,
  • [10] Expression-aware Masking and Progressive Decoupling for Cross-database Facial Expression Recognition
    Zhong, Tao
    Xian, Xiaole
    Wang, Zihan
    Xie, Weicheng
    Shen, Linlin
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,