A Proof of Lie's Product Formula

被引:5
|
作者
Herzog, Gerd [1 ]
机构
[1] Karlsruher Inst Technol, Inst Anal, D-76128 Karlsruhe, Germany
来源
AMERICAN MATHEMATICAL MONTHLY | 2014年 / 121卷 / 03期
关键词
D O I
10.4169/amer.math.monthly.121.03.254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For d x d-matrices A, B and entire functions f, g with f(0) = g(0) = 1, we give an elementary proof of the formula lim(k ->infinity) (f (A/k)g(B/k))(k) = exp(f'(0) A + g' (0) B). For the case f = g = exp, this is Lie's famous product formula for matrices.
引用
收藏
页码:254 / 257
页数:4
相关论文
共 50 条
  • [1] On the functional equation defined by Lie's product formula
    Herzog, Gerd
    Schmoeger, Christoph
    STUDIA MATHEMATICA, 2006, 175 (03) : 271 - 277
  • [2] A short proof of de Shalit's cup product formula
    Besser, Amnon
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 151 (1) : 53 - 59
  • [3] A short proof of de Shalit’s cup product formula
    Amnon Besser
    Israel Journal of Mathematics, 2006, 151 : 53 - 59
  • [4] TROTTER-LIE PRODUCT FORMULA
    KATO, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (09): : 694 - 698
  • [5] A Tutte-style proof of Brylawski's tensor product formula
    Diao, Yuanan
    Hetyei, Gabor
    Hinson, Kenneth
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (06) : 775 - 781
  • [6] LIE-TROTTER FORMULA FOR THE HADAMARD PRODUCT
    王静
    李永刚
    孙华飞
    Acta Mathematica Scientia, 2020, 40 (03) : 659 - 669
  • [7] Lie-Trotter Formula for the Hadamard Product
    Wang, Jing
    Li, Yonggang
    Sun, Huafei
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) : 659 - 669
  • [8] Lie-Trotter Formula for the Hadamard Product
    Jing Wang
    Yonggang Li
    Huafei Sun
    Acta Mathematica Scientia, 2020, 40 : 659 - 669
  • [9] An elementary proof of the Wallis product formula for pi
    Wastlund, Johan
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (10): : 914 - 917
  • [10] A Lie product type formula in Euclidean Jordan algebras
    Tao, Jiyuan
    SPECIAL MATRICES, 2016, 4 (01): : 255 - 261