Bipartite Powers of k-chordal Graphs

被引:0
|
作者
Chandran, L. Sunil [1 ]
Mathew, Rogers [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
关键词
k-chordal graph; hole; chordality; graph power; bipartite power;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst " adt et al. in [Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G([m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G([m]) = G([m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G [m], where k, m are positive integers with k >= 4
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [11] POWERS OF CHORDAL GRAPHS
    BALAKRISHNAN, R
    PAULRAJA, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 211 - 217
  • [12] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Marthe Bonamy
    Matthew Johnson
    Ioannis Lignos
    Viresh Patel
    Daniël Paulusma
    Journal of Combinatorial Optimization, 2014, 27 : 132 - 143
  • [13] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Bonamy, Marthe
    Johnson, Matthew
    Lignos, Ioannis
    Patel, Viresh
    Paulusma, Daniel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 132 - 143
  • [14] TREEWIDTH OF CHORDAL BIPARTITE GRAPHS
    KLOKS, T
    KRATSCH, D
    JOURNAL OF ALGORITHMS, 1995, 19 (02) : 266 - 281
  • [15] CHORDAL BIPARTITE GRAPHS AND CROWNS
    BOUCHITTE, V
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1985, 2 (02): : 119 - 122
  • [16] Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs
    Uehara, R
    Toda, S
    Nagoya, T
    DISCRETE APPLIED MATHEMATICS, 2005, 145 (03) : 479 - 482
  • [17] On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs
    de Figueiredo, C. M. H.
    Faria, L.
    Klein, S.
    Sritharan, R.
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 57 - 67
  • [18] Strongly chordal and chordal bipartite graphs are sandwich monotone
    Pinar Heggernes
    Federico Mancini
    Charis Papadopoulos
    R. Sritharan
    Journal of Combinatorial Optimization, 2011, 22 : 438 - 456
  • [19] Strongly chordal and chordal bipartite graphs are sandwich monotone
    Heggernes, Pinar
    Mancini, Federico
    Papadopoulos, Charis
    Sritharan, R.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 438 - 456