The high conductivity of iron and thermal evolution of the Earth's core

被引:224
|
作者
Gomi, Hitoshi [1 ]
Ohta, Kenji [1 ]
Hirose, Kei [1 ,2 ,3 ]
Labrosse, Stephane [4 ]
Caracas, Razvan [4 ]
Verstraete, Matthieu J. [5 ]
Hernlund, John W. [2 ,6 ]
机构
[1] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan
[2] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528551, Japan
[3] Japan Agcy Marine Earth Sci & Technol, Inst Res Earth Evolut, Yokosuka, Kanagawa 2370061, Japan
[4] Univ Lyon 1, Ecole Normale Super Lyon, Lab Geol Lyon, CNRS UMR 5276, F-69364 Lyon 07, France
[5] Univ Liege, Inst Phys, B-4000 Liege, Belgium
[6] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Core; Electrical resistivity; High pressure; Thermal conductivity; Thermal evolution; ELECTRICAL-RESISTIVITY; HIGH-PRESSURE; COMPOSITIONAL CONVECTION; EPSILON-FE; OUTER CORE; LIQUID FE; 40; GPA; RESISTANCE; BOUNDARY; PENETRATION;
D O I
10.1016/j.pepi.2013.07.010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We measured the electrical resistivity of iron and iron-silicon alloy to 100 GPa. The resistivity of iron was also calculated to core pressures. Combined with the first geophysical model accounting for saturation resistivity of core metal, the present results show that the thermal conductivity of the outermost core is greater than 90 W/m/K. These values are significantly higher than conventional estimates, implying rapid secular core cooling, an inner core younger than 1 Ga, and ubiquitous melting of the lowermost mantle during the early Earth. An enhanced conductivity with depth suppresses convection in the deep core, such that its center may have been stably stratified prior to the onset of inner core crystallization. A present heat flow in excess of 10 TW is likely required to explain the observed dynamo characteristics. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 103
页数:16
相关论文
共 50 条
  • [41] Anisotropy of iron in the Earth's inner core
    Singh, SC
    Montagner, JP
    NATURE, 1999, 400 (6745) : 629 - 629
  • [42] Physics of iron at Earth's core conditions
    Laio, A
    Bernard, S
    Chiarotti, GL
    Scandolo, S
    Tosatti, E
    SCIENCE, 2000, 287 (5455) : 1027 - 1030
  • [43] The Structure of Iron in Earth's Inner Core
    Tateno, Shigehiko
    Hirose, Kei
    Ohishi, Yasuo
    Tatsumi, Yoshiyuki
    SCIENCE, 2010, 330 (6002) : 359 - 361
  • [44] Anisotropy of iron in the Earth's inner core
    S. C. Singh
    J.-P. Montagner
    Nature, 1999, 400 : 629 - 629
  • [45] Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core
    Manthilake, Geeth M.
    de Koker, Nico
    Frost, Dan J.
    McCammon, Catherine A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (44) : 17901 - 17904
  • [46] High-pressure alloying of potassium and iron: Radioactivity in the Earth's core?
    Lee, KKM
    Jeanloz, R
    GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (23)
  • [47] Hydrogen partitioning into molten iron at high pressure: Implications for Earth's core
    Okuchi, T
    SCIENCE, 1997, 278 (5344) : 1781 - 1784
  • [48] High-pressure behavior of osmium: An analog for iron in Earth's core
    Godwal, B. K.
    Yan, J.
    Clark, S. M.
    Jeanloz, R.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (11)
  • [49] The thermal conductivity of Earth's lower mantle
    Tang, Xiaoli
    Ntam, Moses C.
    Dong, Jianjun
    Rainey, Emma S. G.
    Kavner, Abby
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (08) : 2746 - 2752
  • [50] Thermal conductivity of the deep Earth's minerals
    Goncharov, A.
    GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2010, 32 (04): : 50 - 51