MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF CONCAVE-CONVEX ELLIPTIC EQUATIONS WITH CRITICAL GROWTH
被引:8
|
作者:
Liao, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Liao, Jianfeng
[1
,2
]
Pu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Pu, Yang
[1
,2
]
Tang, Chunlei
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Tang, Chunlei
[1
]
机构:
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] China West Normal Univ, Sch Math & Informat, Nanchong 637002, Peoples R China
In this article, the following concave and convex nonlincarities elliptic equations involving critical growth is considered, {-Delta u = g(x)vertical bar u vertical bar(2*-2)u + lambda f(x)vertical bar u vertical bar(q-2)u, x is an element of Omega, u = 0, x is an element of partial derivative Omega, where Omega subset of R-N (N >= 3) is an open bounded domain with smooth boundary, 1 < q < 2, lambda > 0. 2* 2* = 2N/N-2 is the critical Sobolev exponent, f is an element of L2*/2*-q(Omega) is nonzero and nonnegative, and g is an element of C((Omega) over bar) is a positive function with k local maximum points. By the Nehari method and variational method, k +1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-2671].
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
Yin, Honghui
Yang, Zuodong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
Nanjing Normal Univ, Coll Zhongbei, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Liao, Jia-feng
Liu, Jiu
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Liu, Jiu
Zhang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Sch Math & Computat Sci, Zunyi 563002, Guizhou, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
Zhang, Peng
Tang, Chun-Lei
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China
Huang, Yisheng
论文数: 引用数:
h-index:
机构:
Wu, Tsung-Fang
Wu, Yuanze
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R ChinaSoochow Univ, Dept Math, Suzhou 215006, Peoples R China