On the rate of complete convergence for weighted sums of arrays of random elements

被引:0
|
作者
Sung, Soo Hak [1 ]
Volodin, Andrei I.
机构
[1] Pai Chai Univ, Dept Appl Math, Taejon 302735, South Korea
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
arrays of random elements; rowwise independence; weighted sums; complete convergence; rate of convergence; convergence in probability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {V-nk, k >= 1, n >= 1} be an array of rowwise independent random elements which are stochastically dominated by a random variable X with E|X| (gamma)/(alpha+0) log(rho)(|X|) < infinity for some rho > 0,alpha > 0,gamma > 0, > 0 such that theta+alpha/gamma < 2. Let {ank, k >= 1,n >= 1} be an array of suitable constants. A complete convergence result is obtained for the weighted sums of the form Sigma(infinity)(k=1) a(nk)V(nk).
引用
收藏
页码:815 / 828
页数:14
相关论文
共 50 条