Non-Hermitian Hamiltonian and Lamb shift in circular dielectric microcavity

被引:8
|
作者
Park, Kyu-Won [1 ,2 ]
Kim, Jaewan [2 ]
Jeong, Kabgyun [2 ,3 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 04107, South Korea
[2] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
[3] Seoul Natl Univ, Dept Phys & Astron, Ctr Macroscop Quantum Control, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Non-Hermitian Hamiltonian; Dielectric microcavity; Lamb shift; Whispering gallery mode; Effective potential well; WAVE CHAOS;
D O I
10.1016/j.optcom.2016.02.001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the normal modes and quasi-normal modes (QHMs) in circular dielectric microcavities through non-Hermitian Hamiltonian, which come from the modifications due to system-environment coupling. Differences between the two types of modes are studied in detail, including the existence of resonances tails. Numerical calculations of the eigenvalues reveal the Lamb shift in the microcavity due to its interaction with the environment. We also investigate relations between the Lamb shift and quantized angular momentum of the whispering gallery mode as well as the refractive index of the microcavity. For the latter, we make use of the similarity between the Helmholtz equation and the Schrodinger equation, in which the refractive index can be treated as a control parameter of effective potential. Our result can be generalized to other open quantum systems with a potential term. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 50 条
  • [31] Boundary condition independence of non-Hermitian Hamiltonian dynamics
    Mao, Liang
    Deng, Tianshu
    Zhang, Pengfei
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [32] THE CIRCULAR LAW FOR SPARSE NON-HERMITIAN MATRICES
    Basak, Anirban
    Rudelson, Mark
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2359 - 2416
  • [34] Anti-PT symmetry for a non-Hermitian Hamiltonian
    Maamache, Mustapha
    Kheniche, Linda
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):
  • [35] Open quantum dots: Physics of the non-Hermitian Hamiltonian
    Ferry, D. K.
    Akis, R.
    Burke, A. M.
    Knezevic, I.
    Brunner, R.
    Meisels, R.
    Kuchar, F.
    Bird, J. P.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3): : 291 - 304
  • [36] Non-Hermitian effective Hamiltonian and continuum shell model
    Volya, A
    Zelevinsky, V
    PHYSICAL REVIEW C, 2003, 67 (05):
  • [37] Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity
    Samsonov, Boris F.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1989):
  • [38] Room-temperature polaritonic non-Hermitian system with single microcavity
    Hyun Gyu Song
    Minho Choi
    Kie Young Woo
    Chung Hyun Park
    Yong-Hoon Cho
    Nature Photonics, 2021, 15 : 582 - 587
  • [39] Non-Hermitian polariton-photon coupling in a perovskite open microcavity
    Kedziora, Mateusz
    Krol, Mateusz
    Kapuscinski, Piotr
    Sigurosson, Helgi
    Mazur, Rafal
    Piecek, Wiktor
    Szczytko, Jacek
    Matuszewski, Michal
    Opala, Andrzej
    Pietka, Barbara
    NANOPHOTONICS, 2024, 13 (14) : 2491 - 2500
  • [40] Spectral Mode Analysis of Non-Hermitian Phased Microcavity Laser Array
    North, William
    Jahan, Nusrat
    Strzebonski, Pawel
    Choquette, Kent D.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,