Non-Hermitian Hamiltonian and Lamb shift in circular dielectric microcavity

被引:8
|
作者
Park, Kyu-Won [1 ,2 ]
Kim, Jaewan [2 ]
Jeong, Kabgyun [2 ,3 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 04107, South Korea
[2] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
[3] Seoul Natl Univ, Dept Phys & Astron, Ctr Macroscop Quantum Control, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Non-Hermitian Hamiltonian; Dielectric microcavity; Lamb shift; Whispering gallery mode; Effective potential well; WAVE CHAOS;
D O I
10.1016/j.optcom.2016.02.001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the normal modes and quasi-normal modes (QHMs) in circular dielectric microcavities through non-Hermitian Hamiltonian, which come from the modifications due to system-environment coupling. Differences between the two types of modes are studied in detail, including the existence of resonances tails. Numerical calculations of the eigenvalues reveal the Lamb shift in the microcavity due to its interaction with the environment. We also investigate relations between the Lamb shift and quantized angular momentum of the whispering gallery mode as well as the refractive index of the microcavity. For the latter, we make use of the similarity between the Helmholtz equation and the Schrodinger equation, in which the refractive index can be treated as a control parameter of effective potential. Our result can be generalized to other open quantum systems with a potential term. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 196
页数:7
相关论文
共 50 条
  • [1] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [2] A non-Hermitian circular billiard
    Patkar, Saket P.
    Jain, Sudhir R.
    PHYSICS LETTERS A, 2010, 374 (34) : 3396 - 3399
  • [3] Fermionic Model with a Non-Hermitian Hamiltonian
    N. Bebiano
    J. da Providência
    S. Nishiyama
    J. P. da Providência
    Brazilian Journal of Physics, 2020, 50 : 143 - 152
  • [4] Physical meaning of non-Hermitian Hamiltonian
    Chen, ZJ
    Ning, XJ
    ACTA PHYSICA SINICA, 2003, 52 (11) : 2683 - 2686
  • [5] A quantum system with a non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [6] Fermionic Model with a Non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    BRAZILIAN JOURNAL OF PHYSICS, 2020, 50 (02) : 143 - 152
  • [7] Physical meaning of non-Hermitian Hamiltonian
    Chen, Zeng-Jun
    Ning, Xi-Jing
    Wuli Xuebao/Acta Physica Sinica, 2003, 52 (11):
  • [8] A physical interpretation for the non-Hermitian Hamiltonian
    Jin, L.
    Song, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (37)
  • [9] Non-Hermitian Hamiltonian Approach for Electromagnetic Wave Propagation and Dissipation in Dielectric Media
    Zloshchastiev, Konstantin G.
    2016 9TH INTERNATIONAL KHARKIV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2016,
  • [10] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ebru Ergun
    Elgiz Bairamov
    Journal of Mathematical Chemistry, 2011, 49 : 609 - 617