General solution and quantum phases of the time-dependent linear potential

被引:2
|
作者
Liang, ML [1 ]
Zhang, ZG
Zhong, KS
机构
[1] Tianjin Univ, Sch Sci, Dept Appl Phys, Tianjin 300072, Peoples R China
[2] LiuHui Ctr Appl Math, Tianjin 300071, Peoples R China
关键词
D O I
10.1088/0031-8949/70/2-3/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact general solution of the Schrodinger equation for the time-dependent linear potential (TLP) is obtained in momentum representation. The wave functions in coordinate representation are derived from that in momentum representation by the Fourier transform. Meanwhile. the dynamical and geometrical phases for the unbounded states of TLP are calculated.
引用
收藏
页码:98 / 100
页数:3
相关论文
共 50 条
  • [31] Quantum dynamics of a general time-dependent coupled oscillator
    Hassoul, Sara
    Menouar, Salah
    Choi, Jeong Ryeol
    Sever, Ramazan
    MODERN PHYSICS LETTERS B, 2021, 35 (14):
  • [32] General time-dependent formulation of quantum scattering theory
    Althorpe, SC
    PHYSICAL REVIEW A, 2004, 69 (04): : 042702 - 1
  • [33] On the quantum dynamics of a general time-dependent coupled oscillator
    Zerimeche, R.
    Mana, N.
    Sekhri, M.
    Amaouche, N.
    Maamache, M.
    MODERN PHYSICS LETTERS B, 2023, 37 (09):
  • [34] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, KH
    Um, CI
    George, TF
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [35] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127
  • [36] Time-dependent formulation of the linear unitary transformation and the time evolution of general time-dependent quadratic Hamiltonian systems
    Liu, WS
    ANNALS OF PHYSICS, 2004, 312 (02) : 480 - 491
  • [37] On the Time-Dependent Solutions of the Schrodinger Equation. I. The Linear Time-Dependent Potential
    Palma, A.
    Villa, M.
    Sandoval, L.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (7-8) : 1646 - 1650
  • [38] The time-dependent linear potential in the presence of a minimal length
    Merad, M.
    Falek, M.
    PHYSICA SCRIPTA, 2009, 79 (01)
  • [39] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [40] PATH INTEGRAL SOLUTION FOR SOME TIME-DEPENDENT POTENTIAL
    STORCHAK, SN
    PHYSICS LETTERS A, 1992, 161 (05) : 397 - 402