Incipient spanning clusters in square and cubic percolation

被引:0
|
作者
Shchur, LN [1 ]
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The analysis of extensive numerical data for the percolation probabilities of incipient spanning clusters in two dimensional percolation at criticality are presented. We developed an effective code for the single-scan version of the Hoshen-Kopelman algorithm. We measured the probabilities on the square lattice forming samples of rectangular strips with widths from 8 to 256 sites and lengths up to 3200 sites. At total of more than 10(15) random numbers are generated for the sampling procedure. Our data confirm the proposed exact formulaes for the probability exponents conjectured recently on the base of 2D conformal field theory. Some preliminary results for 3D percolation are also discussed.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [31] SERIES EXPANSION ANALYSIS OF DIRECTED SITE BOND PERCOLATION ON THE SQUARE AND SIMPLE CUBIC LATTICES
    DEBELL, K
    ESSAM, JW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : 355 - 363
  • [32] PERCOLATION CLUSTERS
    DOMB, C
    STOLL, E
    SCHNEIDER, T
    CONTEMPORARY PHYSICS, 1980, 21 (06) : 577 - 592
  • [33] Minimal spanning tree and percolation on mosaics: graph theory and percolation
    d'Iribarne, C
    Rasigni, M
    Rasigni, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (14): : 2611 - 2622
  • [34] Percolation thresholds and fractal dimensions for square and cubic lattices with long-range correlated defects
    Zierenberg, Johannes
    Fricke, Niklas
    Marenz, Martin
    Spitzner, F. P.
    Blavatska, Viktoria
    Janke, Wolfhard
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [35] Scaling and universality in the spanning probability for percolation
    Hovi, JP
    Aharony, A
    PHYSICAL REVIEW E, 1996, 53 (01): : 235 - 253
  • [36] Avoiding a Spanning Cluster in Percolation Models
    Cho, Y. S.
    Hwang, S.
    Herrmann, H. J.
    Kahng, B.
    SCIENCE, 2013, 339 (6124) : 1185 - 1187
  • [37] Scaling of the spanning threshold in gradient percolation
    Paterson, Lincoln
    PHYSICAL REVIEW E, 2015, 91 (02)
  • [38] Social percolation on inhomogeneous spanning network
    Gupta, AK
    Stauffer, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 695 - 706
  • [39] Spanning cubic graph designs
    Adams, Peter
    Ardal, Hayri
    Manuch, Jan
    Hoa, Vu Dinh
    Rosenfeld, Moshe
    Stacho, Ladislav
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5781 - 5788
  • [40] Distribution of dangling ends on the incipient percolation cluster
    Inst. F. Theoretische Physik III, Justus-Liebig-Univ. Giessen, H., Giessen, Germany
    不详
    Phys A Stat Mech Appl, 1-4 (96-99):