Constructing Local Bases for a Deep Variational Quantum Eigensolver for Molecular Systems

被引:0
|
作者
Erhart, Luca [1 ]
Mitarai, Kosuke [1 ,2 ,3 ]
Mizukami, Wataru [1 ,2 ,3 ]
Fujii, Keisuke [1 ,2 ,4 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Ctr Quantum Informat & Quantum Biol, 1-2 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[3] PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[4] RIKEN Ctr Quantum Comp RQC, Hirosawa 2-1, Wako, Saitama 3510198, Japan
关键词
Ground state - Molecules - Quantum chemistry - Quantum optics;
D O I
10.1103/PhysRevApplied.18.064051
中图分类号
O59 [应用物理学];
学科分类号
摘要
Current quantum computers are limited in the number of qubits and coherence time, constraining the algorithms executable with sufficient fidelity. The variational quantum eigensolver (VQE) is an algorithm to find an approximate ground state of a quantum system and is expected to work on even such a device. The deep VQE [K. Fujii, et al., arXiv:2007.10917] is an extension of the original VQE algorithm, which takes a divide-and-conquer approach to relax the hardware requirement. While the deep VQE is successfully applied for spin models and periodic material, its validity on a molecule, where the Hamiltonian is highly nonlocal in the qubit basis, is still unexplored. Here, we discuss the performance of the deep VQE algorithm applied to quantum chemistry problems. Specifically, we examine different subspaceforming methods and compare their accuracy and complexity on a 10 H-atom treelike molecule as well as a 13 H-atom version. Additionally, we examine the performance on the natural occurring molecule retinal. This work also proposes multiple methods to lower the number of qubits required to calculate the ground state of a molecule. We find that the deep VQE can simulate the electron-correlation energy of the ground state to an error of below 1%, thus helping us to reach chemical accuracy in some cases. The accuracy differences and qubits' reduction highlights the basis creation method's impact on the deep VQE.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials
    Mizuta, Kaoru
    Fujii, Mikiya
    Fujii, Shigeki
    Ichikawa, Kazuhide
    Imamura, Yutaka
    Okuno, Yukihiro
    Nakagawa, Yuya O.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [32] Symmetry enhanced variational quantum spin eigensolver
    Lyu, Chufan
    Xu, Xusheng
    Yung, Man -Hong
    Bayat, Abolfazl
    QUANTUM, 2023, 7 : 1 - 15
  • [33] VanQver: the variational and adiabatically navigated quantum eigensolver
    Matsuura, Shunji
    Yamazaki, Takeshi
    Senicourt, Valentin
    Huntington, Lee
    Zaribafiyan, Arman
    NEW JOURNAL OF PHYSICS, 2020, 22 (05)
  • [34] Variational quantum eigensolver with reduced circuit complexity
    Zhang, Yu
    Cincio, Lukasz
    Negre, Christian F. A.
    Czarnik, Piotr
    Coles, Patrick J.
    Anisimov, Petr M.
    Mniszewski, Susan M.
    Tretiak, Sergei
    Dub, Pavel A.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [35] Error Analysis of the Variational Quantum Eigensolver Algorithm
    Brandhofer, Sebastian
    Devitt, Simon
    Polian, Ilia
    2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2021,
  • [36] Variational quantum eigensolver for SU(N) fermions
    Consiglio, Mirko
    Chetcuti, Wayne J.
    Bravo-Prieto, Carlos
    Ramos-Calderer, Sergi
    Minguzzi, Anna
    Latorre, Jose, I
    Amico, Luigi
    Apollaro, Tony J. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (26)
  • [37] Variational quantum eigensolver for dynamic correlation functions
    Chen, Hongxiang
    Nusspickel, Max
    Tilly, Jules
    Booth, George H.
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [38] A non-orthogonal variational quantum eigensolver
    Huggins, William J.
    Lee, Joonho
    Baek, Unpil
    O'Gorman, Bryan
    Whaley, K. Birgitta
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [39] The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
    Mihalikova, Ivana
    Pivoluska, Matej
    Plesch, Martin
    Friak, Martin
    Nagaj, Daniel
    Sob, Mojmir
    NANOMATERIALS, 2022, 12 (02)
  • [40] Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver
    Parrish, Robert M.
    Hohenstein, Edward G.
    McMahon, Peter L.
    Martinez, Todd J.
    PHYSICAL REVIEW LETTERS, 2019, 122 (23)