Betti numbers and lifting of Gorenstein codimension three ideals

被引:7
|
作者
Conca, A [1 ]
Valla, G [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
关键词
D O I
10.1080/00927870008826900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider homogeneous Gorenstein ideals of codimension three in a polynomial ring and determine their graded Betti numbers in terms of their Hilbert function. For such ideals we prove also a lifting theorem in the vein of a classical result of Hartshorne concerning monomial ideals.
引用
收藏
页码:1371 / 1386
页数:16
相关论文
共 50 条
  • [21] Multigraded Betti numbers of multipermutohedron ideals
    Kumar, Ashok
    Kumar, Chanchal
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2013, 28 (01) : 1 - 18
  • [22] GRADED BETTI NUMBERS OF POWERS OF IDEALS
    Bagheri, Amir
    Lamei, Kamran
    JOURNAL OF COMMUTATIVE ALGEBRA, 2020, 12 (02) : 153 - 169
  • [23] Extremal Betti numbers of lexsegment ideals
    Crupi, M
    Utano, R
    GEOMETRIC AND COMBINATORIAL ASPECTS OF COMMUNTATIVE ALGEBRA, 2001, 217 : 159 - 164
  • [24] Betti numbers of mixed product ideals
    Rinaldo, Giancarlo
    ARCHIV DER MATHEMATIK, 2008, 91 (05) : 416 - 426
  • [25] BETTI NUMBERS AND THE INTEGRAL CLOSURE OF IDEALS
    CHOI, S
    MATHEMATICA SCANDINAVICA, 1990, 66 (02) : 173 - 184
  • [26] Extremal Betti numbers of graded ideals
    Marilena Crupi
    Rosanna Utano
    Results in Mathematics, 2003, 43 (3-4) : 235 - 244
  • [27] Betti Numbers of Cut Ideals of Trees
    Potka, Samu
    Sarmiento, Camilo
    JOURNAL OF ALGEBRAIC STATISTICS, 2013, 4 (01) : 108 - 117
  • [28] Optimal Betti numbers of forest ideals
    Goff, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [29] Classes of cut ideals and their Betti numbers
    Herzog, Jurgen
    Rahimbeigi, Masoomeh
    Roemer, Tim
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 172 - 187
  • [30] LYUBEZNIK AND BETTI NUMBERS FOR HOMOGENEOUS IDEALS
    Nadi, Parvaneh
    Rahmati, Farhad
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2157 - 2165