Image Super-Resolution Reconstruction Based on a Generative Adversarial Network

被引:4
|
作者
Wu, Yun [1 ]
Lan, Lin [1 ]
Long, Huiyun [1 ]
Kong, Guangqian [1 ]
Duan, Xun [1 ]
Xu, Changzhuan [1 ]
机构
[1] Guizhou Univ, Sch Comp Sci & Technol, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; dual network structure; generative adversarial network; perceptual loss; super-resolution;
D O I
10.1109/ACCESS.2020.3040424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of computer vision, super-resolution reconstruction techniques based on deep learning have undergone considerable advancement; however, certain limitations remain, such as insufficient feature extraction and blurred image generation. To address these problems, we propose an image superresolution reconstruction model based on a generative adversarial network. First, we employ a dual network structure in the generator network to solve the problem of insufficient feature extraction. The dual network structure is divided into an upsample subnetwork and a refinement subnetwork, which upsample and optimize a low-resolution image, respectively. In a scene with large upscaling factors, this structure can reduce the negative effect of noise and enhance the utilization of high-frequency details, thereby generating highquality reconstruction results. Second, to generate sharper super-resolution images, we use the perceptual loss, which exhibits a fast convergence and excellent visual effect, to guide the generator network training. We apply the ResNeXt-50-32x4d network, which has few parameters and a large depth, to calculate the loss to obtain a reconstructed super-resolution image that is highly realistic. Finally, we introduce theWasserstein distance into the discriminator network to enhance the discrimination ability and stability of the model. Specifically, this distance is employed to eliminate the activation function in the last layer of the network and avoid the use of the logarithm in calculating the loss function. Extensive experiments on the DIV2K, Set5, Set14, and BSD100 datasets demonstrate the effectiveness of the proposed model.
引用
收藏
页码:215133 / 215144
页数:12
相关论文
共 50 条
  • [31] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [32] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [33] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [34] Generative adversarial image super-resolution network for multiple degradations
    Lin, Hong
    Fan, Jing
    Zhang, Yangyi
    Peng, Dewei
    IET IMAGE PROCESSING, 2020, 14 (17) : 4520 - 4527
  • [35] Image Super-Resolution using a Improved Generative Adversarial Network
    Wang, Han
    Wu, Wei
    Su, Yang
    Duan, Yongsheng
    Wang, Pengze
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 312 - 315
  • [36] Image Super-Resolution Reconstruction Based on Self-Attention Mechanism and Deep Generative Adversarial Network
    Zhao, Yu-Feng
    He, Jie
    Journal of Network Intelligence, 2024, 9 (04): : 1936 - 1950
  • [37] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101
  • [38] Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
    Huang, Chi-En
    Li, Yung-Hui
    Aslam, Muhammad Saqlain
    Chang, Ching-Chun
    SENSORS, 2021, 21 (23)
  • [39] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [40] A Super-Resolution Reconstruction Model for Remote Sensing Image Based on Generative Adversarial Networks
    Hu, Wenyi
    Ju, Lei
    Du, Yujia
    Li, Yuxia
    REMOTE SENSING, 2024, 16 (08)