Modeling of the Atomic Diffusion Coefficient in Nanostructured Materials

被引:6
|
作者
Hu, Zhiqing [1 ]
Li, Zhuo [2 ]
Tang, Kai [2 ]
Wen, Zi [2 ,3 ]
Zhu, Yongfu [2 ,3 ]
机构
[1] Jilin Univ, Roll Forging Res Inst, Changchun 130022, Jilin, Peoples R China
[2] Jilin Univ, Sch Mat Sci & Engn, Changchun 130022, Jilin, Peoples R China
[3] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Jilin, Peoples R China
来源
ENTROPY | 2018年 / 20卷 / 04期
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
nanostructured materials; diffusion coefficient; grain boundary energy; NANOCRYSTALLINE MATERIALS; ACTIVATION-ENERGY; SMALL PARTICLES; MELTING-POINT; NANOPARTICLES; TEMPERATURE; BISMUTH; COPPER; GOLD; IRON;
D O I
10.3390/e20040252
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A formula has been established, which is based on the size-dependence of a metal's melting point, to elucidate the atomic diffusion coefficient of nanostructured materials by considering the role of grain-boundary energy. When grain size is decreased, a decrease in the atomic diffusion activation energy and an increase in the corresponding diffusion coefficient can be observed. Interestingly, variations in the atomic diffusion activation energy of nanostructured materials are small relative to nanoparticles, depending on the size of the grain boundary energy. Our theoretical prediction is in accord with the computer simulation and experimental results of the metals described.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Modeling atomic hydrogen diffusion in GaAs
    Kagadei, V
    Nefyodtsev, E
    MICRO- AND NANOELECTRONICS 2003, 2004, 5401 : 677 - 682
  • [22] Atomic migration on ordering and diffusion in bulk and nanostructured FePt intermetallic
    Kozubski R.
    Kozlowski M.
    Zapala K.
    Pierron-Bohnes V.
    Pfeiler W.
    Rennhofer M.
    Sepiol B.
    Vogl G.
    Journal of Phase Equilibria and Diffusion, 2005, 26 (05) : 482 - 486
  • [23] MODELING PECVD GROWTH OF NANOSTRUCTURED CARBON MATERIALS
    Neyts, E.
    Bogaerts, A.
    van de Sanden, M. C. M.
    HIGH TEMPERATURE MATERIAL PROCESSES, 2009, 13 (3-4): : 399 - 412
  • [24] Special issue - Modeling and characterization of nanostructured materials
    Gates, TS
    COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) : 1497 - 1498
  • [25] Micromechanical modeling of nanostructured materials by polyclustering technique
    Dobovsek, Igor
    INTERNATIONAL JOURNAL OF NANOSCIENCE, VOL 4, NO 4, 2005, 4 (04): : 623 - 629
  • [26] NanoModel: Multiscale modeling of nanostructured polymeric materials
    Weiss, Horst
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [27] Modeling of the gaseous diffusion coefficient in the presence of NAPL
    Schaefer, CE
    Arands, RR
    Kosson, DS
    JOURNAL OF CONTAMINANT HYDROLOGY, 1998, 33 (3-4) : 431 - 437
  • [28] Modeling of ion diffusion coefficient in saturated concrete
    Zuo, Xiao-Bao
    Sun, Wei
    Yu, Cheng
    Wan, Xu-Rong
    COMPUTERS AND CONCRETE, 2010, 7 (05): : 421 - 435
  • [29] Mathematical modeling of the diffusion coefficient for disperse dyes
    Casetta, M
    Koncar, V
    Cazé, C
    TEXTILE RESEARCH JOURNAL, 2001, 71 (04) : 357 - 361
  • [30] To the theory of grain-boundary diffusion in nanostructured materials
    A. G. Kesarev
    V. V. Kondrat’ev
    I. L. Lomaev
    The Physics of Metals and Metallography, 2010, 109 : 329 - 336