Solving convex programs by random walks

被引:127
|
作者
Bertsimas, D
Vempala, S
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
convex programs; random walks; polynomial time; algorithms; theory;
D O I
10.1145/1008731.1008733
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Minimizing a convex function over a convex set in n-dimensional space is a basic, general problem with many interesting special cases. Here, we present a simple new algorithm for convex optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex functions and to other generalizations.
引用
收藏
页码:540 / 556
页数:17
相关论文
共 50 条
  • [31] THE CUTTING-PLANE METHOD FOR SOLVING CONVEX PROGRAMS
    KELLEY, JE
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (04): : 703 - 712
  • [32] A dual method for solving general convex quadratic programs
    LAMOS Laboratory, University of Bejaia, 06000 Bejaia, Algeria
    不详
    不详
    World Acad. Sci. Eng. Technol., 2009, (489-493):
  • [33] A new algorithm for solving strictly convex quadratic programs
    Li, W
    Swetits, J
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) : 595 - 619
  • [34] Dual support method for solving convex quadratic programs
    Brahmi, Belkacem
    Bibi, Mohand Ouamer
    OPTIMIZATION, 2010, 59 (06) : 851 - 872
  • [35] ITERATED-LOGARITHM LAWS FOR CONVEX HULLS OF RANDOM WALKS WITH DRIFT
    Cygan, Wojciech
    Sandric, Nikola
    Serek, Stjepan
    Wade, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (09) : 6695 - 6724
  • [36] CoBRa: convex hull based random walks for salient object detection
    Singh, Vivek Kumar
    Kumar, Nitin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (21) : 30283 - 30303
  • [37] Convex hulls of random walks: Expected number of faces and face probabilities
    Kabluchko, Zakhar
    Vysotsky, Vladislav
    Zaporozhets, Dmitry
    ADVANCES IN MATHEMATICS, 2017, 320 : 595 - 629
  • [38] Large deviations of convex hulls of self-avoiding random walks
    Schawe, Hendrik
    Hartmann, Alexander K.
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [39] Convex hulls of multiple random walks: A large-deviation study
    Dewenter, Timo
    Claussen, Gunnar
    Hartmann, Alexander K.
    Majumdar, Satya N.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [40] CoBRa: convex hull based random walks for salient object detection
    Vivek Kumar Singh
    Nitin Kumar
    Multimedia Tools and Applications, 2022, 81 : 30283 - 30303