Solving convex programs by random walks

被引:127
|
作者
Bertsimas, D
Vempala, S
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
convex programs; random walks; polynomial time; algorithms; theory;
D O I
10.1145/1008731.1008733
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Minimizing a convex function over a convex set in n-dimensional space is a basic, general problem with many interesting special cases. Here, we present a simple new algorithm for convex optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex functions and to other generalizations.
引用
收藏
页码:540 / 556
页数:17
相关论文
共 50 条
  • [1] Convex hulls of stable random walks
    Cygan, Wojciech
    Sandric, Nikola
    Sebek, Stjepan
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [2] Convex rearrangements of random walks.
    Davydov, Y
    Vershik, AM
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 73 - 95
  • [3] CONVEX HULLS OF MULTIDIMENSIONAL RANDOM WALKS
    Vysotsky, Vladislav
    Zaporozhets, Dmitry
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 7985 - 8012
  • [4] CONVEX HULLS OF RANDOM-WALKS
    SNYDER, TL
    STEELE, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (04) : 1165 - 1173
  • [5] RANDOM CONVEX PROGRAMS
    Calafiore, Giuseppe Carlo
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 3427 - 3464
  • [6] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [7] Convex minorants of random walks and Brownian motion
    Suidan, TM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2001, 46 (03) : 469 - 481
  • [8] CONVEX MINORANTS OF RANDOM WALKS AND LEVY PROCESSES
    Abramson, Josh
    Pitman, Jim
    Ross, Nathan
    Uribe Bravo, Geronimo
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 423 - 434
  • [9] CONVEX HULLS OF PLANAR RANDOM WALKS WITH DRIFT
    Wade, Andrew R.
    Xu, Chang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 433 - 445
  • [10] RANDOM WALKS THAT AVOID THEIR PAST CONVEX HULL
    Angel, Omer
    Benjamini, Itai
    Virag, Balint
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 6 - 16