Universe acceleration and nonlinear electrodynamics

被引:88
|
作者
Kruglov, S. I. [1 ]
机构
[1] Univ Toronto, Dept Chem & Phys Sci, Mississauga, ON L5L 1C6, Canada
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 12期
关键词
FIELD;
D O I
10.1103/PhysRevD.92.123523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new model of nonlinear electrodynamics with a dimensional parameter beta coupled to gravity is considered. We show that an accelerated expansion of the universe takes place if the nonlinear electromagnetic field is the source of the gravitational field. A pure magnetic universe is investigated, and the magnetic field drives the universe to accelerate. In this model, after the big bang, the universe undergoes inflation and the accelerated expansion and then decelerates approaching Minkowski spacetime asymptotically. We demonstrate the causality of the model and a classical stability at the deceleration phase.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] The acceleration of the universe and the physics behind it
    Jean-Philippe Uzan
    General Relativity and Gravitation, 2007, 39 : 307 - 342
  • [32] Remarks on nonlinear electrodynamics
    Patricio Gaete
    José Helayël-Neto
    The European Physical Journal C, 2014, 74
  • [33] NONLINEAR ELECTRODYNAMICS AND TORSION
    DEANDRADE, LCG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (12): : 1297 - 1303
  • [34] Nonlinear electrodynamics and cosmology
    Breton, Nora
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [35] Visualizing nonlinear electrodynamics
    Martin, G
    Sterling, I
    VISUALIZATION AND MATHEMATICS: EXPERIMENTS, SIMULATIONS AND ENVIRONMENTS, 1997, : 37 - 51
  • [36] Limits on nonlinear electrodynamics
    Fouche, M.
    Battesti, R.
    Rizzo, C.
    PHYSICAL REVIEW D, 2016, 93 (09)
  • [37] Nonlinear electrodynamics with birefringence
    Kruglov, S. I.
    PHYSICS LETTERS A, 2015, 379 (07) : 623 - 625
  • [38] A model of nonlinear electrodynamics
    Kruglov, S. I.
    ANNALS OF PHYSICS, 2015, 353 : 299 - 306
  • [39] Local nonlinear electrodynamics
    Pereira, D. D.
    Klippert, R.
    PHYSICS LETTERS A, 2010, 374 (41) : 4175 - 4179
  • [40] Remarks on nonlinear electrodynamics
    Gaete, Patricio
    Helayel-Neto, Jose
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (11):