Hadamard and Fejer-Hadamard inequalities for extended generalized fractional integrals involving special functions

被引:38
|
作者
Kang, Shin Min [1 ,2 ,3 ]
Farid, Ghulam [4 ]
Nazeer, Waqas [5 ]
Tariq, Bushra [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju, South Korea
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] COMSATS Univ, Dept Math, Attock Campus, Islamabad, Pakistan
[5] Univ Educ, Div Sci & Technol, Lahore, Pakistan
[6] GGPS Kamalpur Alam, Attock, Pakistan
关键词
Convex function; m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; Fractional integrals; Extended generalized Mittag-Leffler function;
D O I
10.1186/s13660-018-1701-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the Hadamard and the Fejer-Hadamard inequalities for the extended generalized fractional integral operator involving the extended generalized Mittag-Leffler function. The extended generalized Mittag-Leffler function includes many known special functions. We have several such inequalities corresponding to special cases of the extended generalized Mittag-Leffler function. Also there we note the known results that can be obtained.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Fractional Version of Hermite-Hadamard and Fejer Type Inequalities for a Generalized Class of Convex Functions
    Geng, Lei
    Saleem, Muhammad Shoaib
    Aslam, Kiran Naseem
    Bano, Rahat
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [42] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [43] On new inequalities of Hermite-Hadamard-Fejer type for harmonically convex functions via fractional integrals
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    Gozutok, Ugur
    SPRINGERPLUS, 2016, 5
  • [44] Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejer-Hadamard inequalities
    Zhou, Shuang-Shuang
    Farid, Ghulam
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2021, 6 (07): : 6975 - 6985
  • [45] On the Hermite-Hadamard type inequalities involving generalized integrals
    Valdes, Juan E. Napoles
    CONTRIBUTIONS TO MATHEMATICS, 2022, 5 : 45 - 51
  • [46] HERMITE-HADAMARD-FEJER INEQUALITIES FOR DOUBLE INTEGRALS
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 100 - 116
  • [47] Some Generalized Hadamard–Type Inequalities via Fractional Integrals
    B. Bayraktar
    A. Kh. Attaev
    V. Ch. Kudaev
    Russian Mathematics, 2021, 65 : 1 - 14
  • [49] Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2016, 30 (05) : 1315 - 1326
  • [50] Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals
    Xue-Xiao You
    Muhammad Aamir Ali
    Hüseyin Budak
    Praveen Agarwal
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2021