Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

被引:79
|
作者
Sun, Xiaodian [1 ]
Jin, Li [1 ,2 ]
Xiong, Momiao [1 ,3 ]
机构
[1] Fudan Univ, Lab Theoret Syst Biol, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, SIBS, MPG Partner Inst Computat Biol, Shanghai, Peoples R China
[3] Univ Texas, Hlth Sci Ctr, Human Genet Ctr, Houston, TX USA
来源
PLOS ONE | 2008年 / 3卷 / 11期
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pone.0003758
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Parameters estimation of signal transduction networks based on extended Kalman filter
    Yang, Rui-Feng
    Jia, Jian-Fang
    [J]. Zhongbei Daxue Xuebao (Ziran Kexue Ban)/Journal of North University of China (Natural Science Edition), 2008, 29 (03): : 219 - 223
  • [22] Use of the Kalman filter for inference in state-space models with unknown noise distributions
    Maryak, JL
    Spall, JC
    Heydon, BD
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (01) : 87 - 90
  • [23] Use of the Kalman filter for inference in state-space models with unknown noise distributions
    Maryak, JL
    Spall, JC
    Heydon, BD
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2127 - 2132
  • [24] A GENERALIZED STATE-SPACE MODEL AND ITS APPLICATION TO A SET OF EXTENDED KALMAN FILTER EQUATIONS
    PAPANASTASSIOU, D
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (11) : 3255 - 3262
  • [25] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722
  • [26] KALMAN FILTERING ON APPROXIMATE STATE-SPACE MODELS
    RUIZ, JC
    VALDERRAMA, MJ
    GUTIERREZ, R
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (02) : 415 - 431
  • [27] Kalman filter and state-space approach to blind deconvolution
    Zhang, LQ
    Cichocki, A
    Amari, S
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 425 - 434
  • [28] Optimal input design for minimum-variance estimation of parameters in nonlinear state-space models
    Keesman, Karel J.
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 365 - 370
  • [29] State-space Kalman adaptive IIR notch filter
    Panchalard, Rachu
    Koseeyaporn, Jeerasuda
    Wardkein, Pararnote
    [J]. 2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 206 - +
  • [30] Kalman filter and state-space approach to blind deconvolution
    Zhang, L.-Q.
    Cichocki, A.
    Amari, S.
    [J]. Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 425 - 434