Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

被引:79
|
作者
Sun, Xiaodian [1 ]
Jin, Li [1 ,2 ]
Xiong, Momiao [1 ,3 ]
机构
[1] Fudan Univ, Lab Theoret Syst Biol, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, SIBS, MPG Partner Inst Computat Biol, Shanghai, Peoples R China
[3] Univ Texas, Hlth Sci Ctr, Human Genet Ctr, Houston, TX USA
来源
PLOS ONE | 2008年 / 3卷 / 11期
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pone.0003758
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Extended, Unscented Kalman, and Sigma Point Multiple Distribution Estimation Filters for Nonlinear Discrete State-Space Models
    Murata, Masaya
    Kawano, Isao
    Inoue, Koichi
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 982 - 987
  • [2] Online estimation of the state and parameters in compartmental models using extended Kalman filter
    Özbek, L
    Efe, M
    [J]. NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 262 - 271
  • [3] BOOTSTRAPPING STATE-SPACE MODELS - GAUSSIAN MAXIMUM-LIKELIHOOD-ESTIMATION AND THE KALMAN FILTER
    STOFFER, DS
    WALL, KD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 1024 - 1033
  • [4] Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
    Zeng, Nianyin
    Wang, Zidong
    Zhang, Hong
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (11)
  • [5] Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
    Nianyin ZENG
    Zidong WANG
    Hong ZHANG
    [J]. Science China(Information Sciences), 2016, 59 (11) : 73 - 82
  • [6] On the Nonlinear Estimation of GARCH Models Using an Extended Kalman Filter
    Ossandon, Sebastian
    Bahamonde, Natalia
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL I, 2011, : 148 - 151
  • [7] State estimation of a nonlinear system by Neural Extended Kalman Filter
    Rajagopal, K.
    Pappa, N.
    [J]. 2006 ANNUAL IEEE INDIA CONFERENCE, 2006, : 23 - +
  • [8] Space harmonics in electrical machines:: Extended state-space model and Kalman filter.
    Vernet, F
    Héliodore, F
    Thomas, JL
    Poullain, S
    [J]. CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 909 - 914
  • [9] Nonlinear state estimation, indistinguishable states, and the extended Kalman filter
    Judd, K
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (3-4) : 273 - 281
  • [10] State-Space Model and Kalman Filter Gain Identification by a Kalman Filter of a Kalman Filter
    Phan, Minh Q.
    Vicario, Francesco
    Longman, Richard W.
    Betti, Raimondo
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2018, 140 (03):