Video Super-Resolution via Residual Learning

被引:25
|
作者
Wang, Wenjun [1 ]
Ren, Chao [1 ]
He, Xiaohai [1 ]
Chen, Honggang [1 ]
Qing, Linbo [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Video super-resolution; convolutional neural network; implicit motion compensation; residual block; skip-connection; SINGLE IMAGE SUPERRESOLUTION; MOTION COMPENSATION; INTERPOLATION;
D O I
10.1109/ACCESS.2018.2829908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks have been widely applied in many low level vision tasks. In this paper, we propose a video super-resolution (SR) method named enhanced video SR network with residual blocks (EVSR). The proposed EVSR fully exploits spatio-temporal information and can implicitly capture motion relations between consecutive frames. Therefore, unlike conventional methods to video SR, EVSR does not require an explicit motion compensation process. In addition, residual learning framework exhibits excellence in convergence rate and performance improvement. Based on this, residual blocks and long skip-connection with dimension adjustment layer are proposed to predict high-frequency details. Extensive experiments validate the superiority of our approach over state-of-the-art algorithms.
引用
收藏
页码:23767 / 23777
页数:11
相关论文
共 50 条
  • [21] Residual Invertible Spatio-Temporal Network for Video Super-Resolution
    Zhu, Xiaobin
    Li, Zhuangzi
    Zhang, Xiao-Yu
    Li, Changsheng
    Liu, Yaqi
    Xue, Ziyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5981 - 5988
  • [22] Omniscient Video Super-Resolution
    Yi, Peng
    Wang, Zhongyuan
    Jiang, Kui
    Jiang, Junjun
    Lu, Tao
    Tian, Xin
    Ma, Jiayi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4409 - 4418
  • [23] Fast Spatio-Temporal Residual Network for Video Super-Resolution
    Li, Sheng
    He, Fengxiang
    Du, Bo
    Zhang, Lefei
    Xu, Yonghao
    Tao, Dacheng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10514 - 10523
  • [24] Multi-scale Residual Dense Block for Video Super-Resolution
    Cui, Hetao
    Sun, Quansen
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 424 - 434
  • [25] Image Super-resolution via Residual Block Attention Networks
    Dai, Tao
    Zha, Hua
    Jiang, Yong
    Xia, Shu-Tao
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3879 - 3886
  • [26] JPEG Image Super-Resolution via Deep Residual Network
    Xu, Fengchi
    Yan, Zifei
    Xiao, Gang
    Zhang, Kai
    Zuo, Wangmeng
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 472 - 483
  • [27] Image Super-resolution via Progressive Cascading Residual Network
    Ahn, Namhyuk
    Kang, Byungkon
    Sohn, Kyung-Ah
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 904 - 912
  • [28] Image Super-Resolution via Deep Recursive Residual Network
    Tai, Ying
    Yang, Jian
    Liu, Xiaoming
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2790 - 2798
  • [29] Learning Temporal Dynamics for Video Super-Resolution: A Deep Learning Approach
    Liu, Ding
    Wang, Zhaowen
    Fan, Yuchen
    Liu, Xianming
    Wang, Zhangyang
    Chang, Shiyu
    Wang, Xinchao
    Huang, Thomas S.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) : 3432 - 3445
  • [30] Learning recurrent residual regressors for single image super-resolution
    Zhang, Kaibing
    Wang, Zhen
    Li, Jie
    Gao, Xinbo
    Xiong, Zenggang
    SIGNAL PROCESSING, 2019, 154 : 324 - 337