Statistics of residence time for Levy flights in unstable parabolic potentials

被引:7
|
作者
Dubkov, Alexander A. [1 ]
Dybiec, Bartlomiej [2 ,3 ]
Spagnolo, Bernardo [1 ,4 ,5 ,6 ]
Kharcheva, Anna [1 ,4 ,5 ]
Guarcello, Claudio [7 ,8 ]
Valenti, Davide [4 ,5 ,9 ]
机构
[1] Lobachevsky State Univ Nizhni Novgorod, Radiophys Dept, Gagarin Ave 23, Nizhnii Novgorod 603950, Russia
[2] Jagiellonian Univ, Inst Theoret Phys, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Mark Kac Ctr Complex Syst Res, Ul St Lojasiewicza 11, PL-30348 Krakow, Poland
[4] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Grp Interdisciplinary Theoret Phys, Viale Sci,Edificio 18, I-90128 Palermo, Italy
[5] CNISM, Unita Palermo, Viale Sci,Edificio 18, I-90128 Palermo, Italy
[6] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-90123 Catania, Italy
[7] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[8] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, Complesso Univ Monte S Angelo, I-80126 Naples, Italy
[9] CNR, Ist Ric & Innovaz Biomed, IRIB, Via Ugo La Malfa 153, I-90146 Palermo, Italy
关键词
NONEQUILIBRIUM SYSTEMS; INSTABILITY POINT; STATIONARY STATES; SCALING THEORY; DYNAMICS; NOISE; DECAY; ESCAPE; EQUILIBRIUM; TRANSITIONS;
D O I
10.1103/PhysRevE.102.042142
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the residence time problem for an arbitrary Markovian process describing nonlinear systems without a steady state. We obtain exact analytical results for the statistical characteristics of the residence time. For diffusion in a fully unstable potential profile in the presence of Levy noise we get the conditional probability density of the particle position and the average residence time. The noise-enhanced stability phenomenon is observed in the system investigated. Results from numerical simulations are in very good agreement with analytical ones.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Universal record statistics for random walks and Levy flights with a nonzero staying probability
    Majumdar, Satya N.
    Mounaix, Philippe
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (31)
  • [22] LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS
    FOGEDBY, HC
    PHYSICAL REVIEW E, 1994, 50 (02) : 1657 - 1660
  • [23] Residence time distributions in unstable channel flow
    Poumaere, Nelson
    Pier, Benoit
    Raynal, Florence
    PHYSICAL REVIEW FLUIDS, 2024, 9 (10):
  • [24] Statistics of the number of records for random walks and Levy flights on a 1D lattice
    Mounaix, Philippe
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (41)
  • [25] Levy flights in a steep potential well displaying non-Gibbs-Boltzmann statistics
    ShangGuan Dan-Hua
    Lue Yan
    Bao Jing-Dong
    ACTA PHYSICA SINICA, 2010, 59 (11) : 7607 - 7611
  • [26] Langevin approach to levy flights in fixed potentials: Exact results for stationary probability distributions
    Dubkov, Alexander
    Spagnolo, Bernardo
    ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1745 - 1758
  • [27] Nonergodicity of a Time Series Obeying Levy Statistics
    Margolin, Gennady
    Barkai, Eli
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (01) : 137 - 167
  • [28] First Order Transition for the Optimal Search Time of Levy Flights with Resetting
    Kusmierz, Lukasz
    Majumdar, Satya N.
    Sabhapandit, Sanjib
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2014, 113 (22)
  • [29] Spatio-temporal coupling in the continuous-time Levy flights
    Institute of Experimental Physics, Warsaw University, Hoza 69 Pl-00681 Warsaw, Poland
    Solid State Ionics, 1 (323-329):
  • [30] Average time spent by Levy flights and walks on an interval with absorbing boundaries
    Buldyrev, SV
    Havlin, S
    Kazakov, AY
    da Luz, MGE
    Raposo, EP
    Stanley, HE
    Viswanathan, GM
    PHYSICAL REVIEW E, 2001, 64 (04): : 11 - 411081