A zero-one law for recurrence and transience of frog processes

被引:19
|
作者
Kosygina, Elena [1 ]
Zerner, Martin P. W. [2 ]
机构
[1] Baruch Coll, Dept Math, Box B6-230,One Bernard Baruch Way, New York, NY 10010 USA
[2] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
基金
欧洲研究理事会;
关键词
Dichotomy; Egg model; Frog model; Infinite cluster; Random conductances; Random environment; Random walk; Recurrence; Transience; Transitive Markov chain; Zero-one law; RANDOM-WALKS; RANDOM ENVIRONMENT;
D O I
10.1007/s00440-016-0711-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide sufficient conditions for the validity of a dichotomy, i.e. zero-one law, between recurrence and transience of general frog models. In particular, the results cover frog models with i.i.d. numbers of frogs per site where the frog dynamics are given by quasi-transitive Markov chains or by random walks in a common random environment including super-critical percolation clusters on . We also give a sufficient and almost sharp condition for recurrence of uniformly elliptic frog processes on . Its proof uses the general zero-one law.
引用
下载
收藏
页码:317 / 346
页数:30
相关论文
共 50 条
  • [1] A zero-one law for recurrence and transience of frog processes
    Elena Kosygina
    Martin P. W. Zerner
    Probability Theory and Related Fields, 2017, 168 : 317 - 346
  • [2] ZERO-ONE LAW FOR GAUSSIAN PROCESSES
    JAIN, NC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 29 (03) : 585 - &
  • [3] Zero-one law for directional transience of one dimensional excited random walks
    Amir, Gideon
    Berger, Noam
    Orenshtein, Tal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 47 - 57
  • [4] ON A ZERO-ONE LAW
    BARTFAI, P
    REVESZ, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01): : 43 - &
  • [5] ZERO-ONE LAW
    BLUM, JR
    PATHAK, PK
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03): : 1008 - &
  • [6] Zero-one law for directional transience of one-dimensional random walks in dynamic random environments
    Orenshtein, Tal
    dos Santos, Renato Soares
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [7] AN APPROXIMATE ZERO-ONE LAW
    RUSSO, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01): : 129 - 139
  • [8] A GEOMETRIC ZERO-ONE LAW
    Gilman, Robert H.
    Gurevich, Yuri
    Miasnikov, Alexei
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (03) : 929 - 938
  • [9] Variation on the zero-one law
    Blass, A
    Gurevich, Y
    Kreinovich, V
    Longpre, L
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 29 - 30
  • [10] ON RUSSOS APPROXIMATE ZERO-ONE LAW
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1994, 22 (03): : 1576 - 1587