Using Anchor Text Refined by Page Importance to Improve Web Retrieval

被引:0
|
作者
Zhang, Yonggang [1 ]
Lei, Kai [1 ]
Huang, Lian'en [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Shenzhen Key Lab Cloud Comp Technol & Applicat SP, Shenzhen 518055, Guangdong, Peoples R China
关键词
component; Web Retrieval; Anchor Text; Page Importance;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As important part of web page contents, anchor texts have been widely used and proved to be useful in web information retrieval systems, especially for the navigational queries. But previous work only focused on how to determine the importance of anchor texts for a given destination page. From global perspective, web link-structure is very useful to determine page importance, and this paper proposes a method that combines page importance and relevance between anchor texts and their destination pages together to build new anchor-based retrieval models. Experimental results show that the combined models are better than the models which only consider the relevance between anchor texts and their destination pages.
引用
收藏
页码:1200 / 1203
页数:4
相关论文
共 50 条
  • [11] Using current web page structure to improve prefetching performance
    Domenech, Josep
    Gil, Jose A.
    Sahuquillo, Julio
    Pont, Ana
    [J]. COMPUTER NETWORKS, 2010, 54 (09) : 1404 - 1417
  • [12] Determining the titles of Web pages using anchor text and link analysis
    Jeong, Ok-Ran
    Oh, Jehwan
    Kim, Dong-Jin
    Lyu, Heetae
    Kim, Won
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (09) : 4322 - 4329
  • [13] Text retrieval systems for the Web
    Nekrestyanov, IS
    Panteleeva, NV
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2002, 28 (04) : 207 - 225
  • [14] Text retrieval systems for the web
    Nekrest'yanov, I.S.
    Panteleeva, N.V.
    [J]. Programmirovanie, 2002, 28 (04): : 33 - 58
  • [15] Text Retrieval Systems for the Web
    I. S. Nekrestyanov
    N. V. Panteleeva
    [J]. Programming and Computer Software, 2002, 28 : 207 - 225
  • [16] Anchor point indexing in Web document retrieval
    Kao, B
    Lee, J
    Ng, CY
    Cheung, D
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2000, 30 (03): : 364 - 373
  • [17] Anchor text mining for translation of Web queries
    Lu, WH
    Chien, LF
    Lee, HJ
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 401 - 408
  • [18] Using Web Search Engines to Improve Text Recognition
    Donoser, Michael
    Bischof, Horst
    Wagner, Silke
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2609 - 2612
  • [19] Using SOFM to improve web site text content
    Ríos, SA
    Velásquez, JD
    Vera, ES
    Yasuda, H
    Aoki, T
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 622 - 626
  • [20] USING WEB TEXT TO IMPROVE KEYWORD SPOTTING IN SPEECH
    Gandhe, Ankur
    Qin, Long
    Metze, Florian
    Rudnicky, Alexander
    Lane, Ian
    Eck, Matthias
    [J]. 2013 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2013, : 428 - 433