Lower Bounds on some certain van der Waerden Functions

被引:0
|
作者
Tian, Fang [1 ]
Liu, Zi-Long [2 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai, Peoples R China
[2] Univ Shanghai Sci & Technol China, Sch Comp & Elect Engn, Shanghai, Peoples R China
关键词
van der Waerden numbers; arithmetic progressions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers r and k(1), k(2), ..., k(r), the vander Waerden number W(k(1), k(2), ... , k(r); r) is the minimum integer N such that whenever set {1, 2, ..., N} is partitioned into r sets S-1, S-2, ..., S-r, there is a k(i)-term arithmetic progression contained in Si for some i. This paper establishes an asymptotic lower bound for W(k, m; 2) for fixed m >= 3 which improves the result of T.C. Brown et al's in [Bounds on some van der Waerden numbers. J. Combin. Theory, Ser.A 115 (2008), 1304-1309]. Some lower bounds on certain van der Waerden-like functions are also proposed.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [1] Some Lower Bounds for Three Color Van Der Waerden Numbers
    Li, Yong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 620 - 623
  • [2] Bounds on some van der Waerden numbers
    Brown, Tom
    Landman, Bruce M.
    Robertson, Aaron
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1304 - 1309
  • [3] On the lower bound for van der Waerden functions
    D. A. Shabanov
    Mathematical Notes, 2010, 87 : 918 - 920
  • [4] On the lower bound for van der Waerden functions
    Shabanov, D. A.
    MATHEMATICAL NOTES, 2010, 87 (5-6) : 918 - 920
  • [5] New lower bounds for van der Waerden numbers
    Green, Ben
    FORUM OF MATHEMATICS PI, 2022, 10
  • [6] IMPROVED LOWER BOUNDS FOR VAN DER WAERDEN NUMBERS
    Hunter, Zach
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1231 - 1252
  • [7] Lower bounds for multicolor van der Waerden numbers
    Hunter, Zach
    ISRAEL JOURNAL OF MATHEMATICS, 2025,
  • [8] Improved Lower Bounds for Van Der Waerden Numbers
    Zach Hunter
    Combinatorica, 2022, 42 : 1231 - 1252
  • [9] A new method to construct lower bounds for Van der Waerden numbers
    Herwig, P. R.
    Heule, M. J. H.
    van Lambalgen, P. M.
    van Maaren, H.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [10] On functions of van der Waerden type
    Rubinstein, A. I.
    Telyakovskii, D. S.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2023, 23 (03): : 339 - 347