Supervised Feature Selection Method for High-Dimensional Data Classification in Photo-Thermal Infrared Imaging with Limited Training Data

被引:0
|
作者
Zhang, Nian [1 ]
Leatham, Keenan [1 ]
机构
[1] Univ Dist Columbia, Dept Elect & Comp Engn, Washington, DC 20008 USA
来源
2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT) | 2018年
基金
美国国家科学基金会;
关键词
Support vector machine; kernel based SVM; feature selection; classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the kernel based SVM algorithm with variable models to adapt to the high-dimensional but relatively small samples for remote explosive detection on photo-thermal infrared imaging spectroscopy (PT-IRIS) classification. The response plot, predicted vs. actual plot, and residuals plot of the linear, quadratic, cubic, and coarse Gaussian SVM are demonstrated. In addition, a comprehensive comparison of classification performance of these SVM models is conducted in terms of root mean square error, R-squared, mean squared error, and mean absolute error. The excellent experimental results demonstrated that the kernel based SVM models provide a very promising feature selection solution to high-dimensional data sets with limited training samples.
引用
收藏
页码:593 / 598
页数:6
相关论文
共 50 条
  • [21] Supervised Classification of High-Dimensional Correlated Data: Application to Genomic Data
    Gaye, Aboubacry
    Diongue, Abdou Ka
    Sylla, Seydou Nourou
    Diarra, Maryam
    Diallo, Amadou
    Talla, Cheikh
    Loucoubar, Cheikh
    JOURNAL OF CLASSIFICATION, 2024, 41 (01) : 158 - 169
  • [22] A Cost-Sensitive Feature Selection Method for High-Dimensional Data
    An, Chaojie
    Zhou, Qifeng
    14TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2019), 2019, : 1089 - 1094
  • [23] Supervised Classification of High-Dimensional Correlated Data: Application to Genomic Data
    Aboubacry Gaye
    Abdou Ka Diongue
    Seydou Nourou Sylla
    Maryam Diarra
    Amadou Diallo
    Cheikh Talla
    Cheikh Loucoubar
    Journal of Classification, 2024, 41 : 158 - 169
  • [24] A training algorithm for classification of high-dimensional data
    Vieira, A
    Barradas, N
    NEUROCOMPUTING, 2003, 50 : 461 - 472
  • [25] Interaction-based feature selection and classification for high-dimensional biological data
    Wang, Haitian
    Lo, Shaw-Hwa
    Zheng, Tian
    Hu, Inchi
    BIOINFORMATICS, 2012, 28 (21) : 2834 - 2842
  • [26] FACO: A Novel Hybrid Feature Selection Algorithm for High-Dimensional Data Classification
    Popoola, Gideon
    Oyeniran, Kayode
    SOUTHEASTCON 2024, 2024, : 61 - 68
  • [27] Neighborhood Component Feature Selection for High-Dimensional Data
    Yang, Wei
    Wang, Kuanquan
    Zuo, Wangmeng
    JOURNAL OF COMPUTERS, 2012, 7 (01) : 161 - 168
  • [28] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [29] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442
  • [30] Simultaneous Feature and Model Selection for High-Dimensional Data
    Perolini, Alessandro
    Guerif, Sebastien
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 47 - 50