Model-based normalization for iterative 3D PET image reconstruction

被引:51
|
作者
Bai, B
Li, Q
Holdsworth, CH
Asma, E
Tai, YC
Chatziioannou, A
Leahy, RM
机构
[1] Univ So Calif, Signal & Image Proc Inst, Los Angeles, CA 90089 USA
[2] Univ Calif Los Angeles, Crump Inst Mol Imaging, Los Angeles, CA 90095 USA
[3] Washington Univ, Sch Med, St Louis, MO 63110 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2002年 / 47卷 / 15期
关键词
D O I
10.1088/0031-9155/47/15/316
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We describe a method for normalization in 3D PET for use with maximum a posteriori (MAP) or other iterative model-based image reconstruction methods. This approach is an extension of previous factored normalization methods in which we include separate factors for detector sensitivity, geometric response, block effects and deadtime. Since our MAP reconstruction approach already models some of the geometric factors in the forward projection, the normalization factors must be modified to account only for effects not already included in the model. We describe a maximum likelihood approach to joint estimation of the count-rate independent normalization factors, which we apply to data from a uniform cylindrical source. We then compute block-wise and block-profile deadtime correction factors using singles and coincidence data, respectively, from a multiframe cylindrical source. We have applied this method for reconstruction of data from the Concorde microPET P4 scanner. Quantitative evaluation of this method using well-counter measurements of activity in a multicompartment phantom compares favourably with normalization based directly on cylindrical source measurements.
引用
收藏
页码:2773 / 2784
页数:12
相关论文
共 50 条
  • [1] Stochastic Backprojection for Accelerated Model-Based Iterative 3D Image Reconstruction
    Sisniega, A.
    Stayman, J.
    Capostagno, S.
    Weiss, C.
    Ehtiati, T.
    Siewerdsen, J.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E554 - E554
  • [2] Advances in Model-Based 3D Image Reconstruction
    Chen, G.
    Pan, X.
    Stayman, J.
    Samei, E.
    [J]. MEDICAL PHYSICS, 2014, 41 (06) : 416 - 417
  • [3] Fast iterative image reconstruction of 3D PET data
    Kinahan, PE
    Michel, C
    Defrise, M
    Townsend, DW
    Sibomana, M
    Lonneux, M
    Newport, DF
    Luketich, JD
    [J]. 1996 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1997, : 1918 - 1922
  • [4] Accelerated Model-Based Iterative 3D Image Reconstruction Using a Multi-Level Morphological Pyramid
    Sisniega, A.
    Stayman, J. W.
    Capostagno, S.
    Weiss, C. R.
    Ehtiati, T.
    Siewerdsen, J. H.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E222 - E223
  • [5] Model-based 3D SAR Reconstruction
    Knight, Chad
    Gunther, Jake
    Moon, Todd
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXI, 2014, 9093
  • [6] PET 3D Iterative Reconstruction on Cell BE
    Chevalier, David E.
    Drapkin, Evgeny
    [J]. 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 4054 - 4058
  • [7] Model-based statistical image reconstruction for 4D PET
    Li, T.
    Thorndyke, B.
    Schreibmann, E.
    Yang, Y.
    Xing, L.
    [J]. MEDICAL PHYSICS, 2006, 33 (06) : 2279 - 2279
  • [8] Model-based Iterative CT Image Reconstruction on GPUs
    Sabne, Amit
    Wang, Xiao
    Kisner, Sherman
    Bouman, Charles
    Raghunathan, Anand
    Midkiff, Samuel
    [J]. ACM SIGPLAN NOTICES, 2017, 52 (08) : 207 - 220
  • [9] Optimization of PET image quality by means of 3D data acquisition and iterative image reconstruction
    Doll, J
    Zaers, J
    Trojan, H
    Bellemann, ME
    Adam, LE
    Haberkorn, U
    Brix, G
    [J]. NUKLEARMEDIZIN-NUCLEAR MEDICINE, 1998, 37 (02): : 62 - 67
  • [10] Fast projectors for iterative 3D PET reconstruction
    Cho, Sanghee
    Li, Quanzheng
    Ahn, Sangtae
    Leahy, Richard M.
    [J]. 2005 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2005, : 1933 - 1937