Jacobi-like algorithms for the indefinite generalized Hermitian eigenvalue problem

被引:7
|
作者
Mehl, C [1 ]
机构
[1] TU Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Jacobi-like method; Hermitian pencil; eigenvalues;
D O I
10.1137/S089547980240947X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss structure-preserving Jacobi-like algorithms for the solution of the indefinite generalized Hermitian eigenvalue problem. We discuss a method based on the solution of Hermitian 4 x 4 subproblems which generalizes the Jacobi-like method of Bunse-Gerstner and Fa bender for Hamiltonian matrices. Furthermore, we discuss structure-preserving Jacobi-like methods based on the solution of non-Hermitian 2 x 2 subproblems. For these methods a local convergence proof is given. Numerical test results for the comparison of the proposed methods are presented.
引用
收藏
页码:964 / 985
页数:22
相关论文
共 50 条
  • [1] JACOBI AND JACOBI-LIKE ALGORITHMS FOR A PARALLEL COMPUTER
    SAMEH, AH
    [J]. MATHEMATICS OF COMPUTATION, 1971, 25 (115) : 579 - &
  • [2] New Jacobi-like algorithms for non-orthogonal joint diagonalization of Hermitian matrices
    Cheng, Guang-Hui
    Li, Shan-Man
    Moreau, Eric
    [J]. SIGNAL PROCESSING, 2016, 128 : 440 - 448
  • [3] AN EFFICIENT JACOBI-LIKE ALGORITHM FOR PARALLEL EIGENVALUE COMPUTATION
    GOTZE, J
    PAUL, S
    SAUER, M
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (09) : 1058 - 1065
  • [4] An implicit Jacobi-like method for computing generalized hyperbolic SVD
    Bojanczyk, AW
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 293 - 307
  • [5] A JACOBI-LIKE ALGORITHM FOR COMPUTING THE SCHUR DECOMPOSITION OF A NON-HERMITIAN MATRIX
    STEWART, GW
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1985, 6 (04): : 853 - 864
  • [6] A JACOBI-LIKE ALGORITHM FOR COMPUTING THE GENERALIZED SCHUR FORM OF A REGULAR PENCIL
    CHARLIER, JP
    VANDOOREN, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (1-2) : 17 - 36
  • [7] A JACOBI-LIKE ALGORITHM FOR COMPUTING THE GENERALIZED SCHUR FORM OF A REGULAR PENCIL
    CHARLIER, JP
    VANDOOREN, P
    [J]. ADVANCED ALGORITHMS AND ARCHITECTURES FOR SIGNAL PROCESSING IV, 1989, 1152 : 119 - 130
  • [8] A Jacobi-like acceleration for dynamic programming
    Laurini, Mattia
    Micelli, Piero
    Consolini, Luca
    Locatelli, Marco
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 7371 - 7376
  • [9] DIRECT SPECTRAL PROBLEM FOR THE GENERALIZED JACOBI HERMITIAN MATRICES
    Ivasiuk, I. Ya.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2009, 15 (01): : 3 - 14
  • [10] Quantum algorithms for the generalized eigenvalue problem
    Liang, Jin-Min
    Shen, Shu-Qian
    Li, Ming
    Fei, Shao-Ming
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (01)