AN EFFICIENT JACOBI-LIKE ALGORITHM FOR PARALLEL EIGENVALUE COMPUTATION

被引:53
|
作者
GOTZE, J
PAUL, S
SAUER, M
机构
[1] Institute for Network Theory and Circuit Design, Technical University Munich, D-80333 Munich
关键词
APPROXIMATE ROTATIONS; CORDIC; DIGITAL SIGNAL PROCESSING; EIGENVALUE COMPUTATION; FAST IMPLEMENTATIONS; JACOBI ALGORITHM; MATRIX COMPUTATION; SCALING COMPUTATION;
D O I
10.1109/12.241595
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A very fast Jacobi-like algorithm for the parallel solution of symmetric eigenvalue problems is proposed. It becomes possible by not focusing on the realization of the Jacobi rotation with a CORDIC processor, but by applying approximate rotations and adjusting them to single steps of the CORDIC algorithm, i.e., only one angle of the CORDIC angle sequence defines the Jacobi rotation in each step. This angle can be determined by some shift, add and compare operations. Although only linear convergence is obtained for the most simple version of the new algorithm, the overall operation count (shifts and adds) decreases dramatically. A slow increase of the number of involved CORDIC angles during the runtime retains quadratic convergence.
引用
收藏
页码:1058 / 1065
页数:8
相关论文
共 50 条