MIRE: A multidimensional information retrieval engine for structured data and text

被引:3
|
作者
Lee, F [1 ]
Grossman, D [1 ]
Orlandic, R [1 ]
机构
[1] IIT, Dept Comp Sci, Informat Retrieval Lab, Chicago, IL 60616 USA
关键词
D O I
10.1109/ITCC.2002.1000391
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an original information-retrieval engine, called MIRE, for integrating structured data and text. Among other things, MIRE is designed to work in a natural and efficient way with the inherent hierarchies of structured data. While multi-dimensional access methods have originally been developed for spatial applications, they can be successfully used to index hierarchical structured data and add to an existing information-retrieval engine the capabilitv of navigating hierarchical dimensions. To support this capability, MIRE enhances the processing algorithms of an existing multidimensional access method to avoid overflow and support for hierarchical dimensions. Compared to 2 search engine with multiple indexes for a different type of search, the multidimensional approach shows a significant reduction in the number of page accesses over a large document collection.
引用
收藏
页码:224 / 229
页数:6
相关论文
共 50 条
  • [41] Knowledge Graphs in Text Information Retrieval
    Maksimov, Nikolay
    Golitsyna, Olga
    Lebedev, Alexander
    [J]. BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2021, 2022, 1032 : 268 - 274
  • [42] Information retrieval beyond the text document
    Rui, Y
    Ortega, M
    Huang, TS
    Mehrotra, S
    [J]. LIBRARY TRENDS, 1999, 48 (02) : 455 - 474
  • [43] Text Compression for Myanmar Information Retrieval
    Lin, Nay
    Vitaly, Kudinov A.
    Soe, Yan Naing
    [J]. NLPIR 2019: 2019 3RD INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, 2019, : 62 - 67
  • [44] CONDOR, AN INTEGRATED DATA-BASE INFORMATION-RETRIEVAL SYSTEM FOR STRUCTURED AND UNSTRUCTURED DATA
    FISCHER, HG
    [J]. SIEMENS FORSCHUNGS-UND ENTWICKLUNGSBERICHTE-SIEMENS RESEARCH AND DEVELOPMENT REPORTS, 1981, 10 (03): : 179 - 187
  • [45] PARTIAL MATCH RETRIEVAL OF MULTIDIMENSIONAL DATA
    FLAJOLET, P
    PUECH, C
    [J]. JOURNAL OF THE ACM, 1986, 33 (02) : 371 - 407
  • [46] Lower dimensional representation of text data in vector space based information retrieval
    Park, H
    Jeon, M
    Rosen, JB
    [J]. COMPUTATIONAL INFORMATION RETRIEVAL, 2001, : 3 - 23
  • [47] INCORPORATING STRUCTURED TEXT RETRIEVAL INTO THE EXTENDED BOOLEAN MODEL
    du Plessis, Mathys C.
    de Kock, Gideon de V.
    [J]. COMPUTING AND INFORMATICS, 2009, 28 (05) : 581 - 597
  • [48] Structured Intelligent Search Engine for Effective Information Retrieval using Query Clustering Technique and Semantic Web
    Prakasha, S.
    Shashidhar, H. R.
    Raju, G. T.
    [J]. 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 688 - 695
  • [49] Utilizing Structured Information from Multiple External Sources in the Context of the Multidimensional Data Model
    Mertens, Matthias
    Krahn, Tobias
    Appelrath, H. -Juergen
    [J]. BUSINESS INFORMATION SYSTEMS, BIS 2013, 2013, 157 : 88 - 99
  • [50] Multidimensional Mining of Massive Text Data
    Zhang, Chao
    Han, Jiawei
    [J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2019, 11 (02): : 1 - 198