A no-go result for the quantum damped harmonic oscillator

被引:10
|
作者
Bagarello, F. [1 ,2 ]
Gargano, F. [1 ]
Roccati, F. [3 ]
机构
[1] Univ Palermo, Dipartimento Ingn, Viale Sci, I-90128 Palermo, Italy
[2] INFN, Sez Napoli, Naples, Italy
[3] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy
关键词
Pseudo-bosons; Quantum damped harmonic oscillator;
D O I
10.1016/j.physleta.2019.06.022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter we show that it is not possible to set up a canonical quantization for the damped harmonic oscillator using the Bateman Lagrangian. In particular, we prove that no square integrable vacuum exists for the natural ladder operators of the system, and that the only vacua can be found as distributions. This implies that the procedure proposed by some authors is only formally correct, and requires a much deeper analysis to be made rigorous. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2836 / 2838
页数:3
相关论文
共 50 条
  • [41] Quantizing the damped harmonic oscillator
    Latimer, DC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09): : 2021 - 2027
  • [42] ON THE QUANTIZATION OF DAMPED HARMONIC OSCILLATOR
    Ghosh, Subrata
    Choudhuri, Amitava
    Talukdar, B.
    [J]. ACTA PHYSICA POLONICA B, 2009, 40 (01): : 49 - 57
  • [43] Deformed damped harmonic oscillator
    Streklas, Antony
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (01) : 84 - 94
  • [44] The End of the Thermodynamics of Computation: A No-Go Result
    Norton, John D.
    [J]. PHILOSOPHY OF SCIENCE, 2013, 80 (05) : 1182 - 1192
  • [45] Nonclassical phase-space trajectories for the damped harmonic quantum oscillator
    Pachon, L. A.
    Ingold, G. -L.
    Dittrich, T.
    [J]. CHEMICAL PHYSICS, 2010, 375 (2-3) : 209 - 215
  • [46] EXACT RESULTS FOR A DAMPED QUANTUM-MECHANICAL HARMONIC-OSCILLATOR
    RISEBOROUGH, PS
    HANGGI, P
    WEISS, U
    [J]. PHYSICAL REVIEW A, 1985, 31 (01): : 471 - 478
  • [47] Quantum Zeno and anti-Zeno effects for the damped harmonic oscillator
    Maniscalco, Sabrina
    Piilo, Jyrki
    Suominen, Kalle-Antti
    [J]. NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [48] Quantum analysis of the damped harmonic oscillator and its unitary transformed systems
    Um, CI
    Hong, SK
    Kim, IH
    Yeon, KH
    Kim, GH
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1997, 30 (03) : 499 - 505
  • [49] Exact quantum theory of the damped harmonic oscillator with a linear damping constant
    Um, CI
    Choi, JR
    Yeon, KH
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 38 (05) : 447 - 451
  • [50] GENERAL SOLUTION OF THE QUANTUM DAMPED HARMONIC OSCILLATOR II: SOME EXAMPLES
    Fujii, Kazuyuki
    Suzuki, Tatsuo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (02) : 225 - 231